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HK manifolds

Hyperkahler manifold: compact complex simply connected Kahler
manifold X with H?9(X) = Cn, where 7 is a symplectic form.
~~ projective HK manifolds.

Examples

dim 2: K3 surfaces.
dim > 2: 4 deformation classes are known.

O (Beauville) Hilb"(S) where S is a K3 surface, n > 2;

@ (Beauville) Kum™(A) where A is an abelian surface, n > 2;
© (O'Grady) 10-dimensional example OG10;

© (O'Grady) 6-dimensional example OG6.

we focus on OG10.
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More on Examples (1) and (3)

Let S be a K3 surface.

© (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with
primitive Mukai vector v ~ges Hilb"(S).

© (O’Grady, Lehn-Sorger) Symplectic resolutions of moduli
spaces of semistable sheaves on S with Mukai vector v = 2y,
VB =2~y OGLO.

cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in P® over C.

O (Beauville-Donagi) Fano variety Fy parametrizing lines in Y
~gef Hilb?(K3).

@ (Lehn-Lehn-Sorger-van Straten) HK eightfold My constructed
out of twisted cubic curves, for Y not containing a plane
~def Hilb*(K3).

© (Laza-Sacca-Voisin) Intermediate Jacobian of Y ~ger OG10.
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Why HK manifolds from cubic fourfolds?
By the work of Kuznetsov there is a subcategory of K3 type in
DP(Y) := DP(Coh(Y)), denoted by Ku(Y).

© Construct examples of projective hyperkahler manifolds of type
OG10 as desingularizations of moduli spaces of semistable
objects in KLu(Y).

@ Relate them to the geometry of Y:

@ Intermediate Jacobian of Y;
@ Hilbert scheme of elliptic quintic curves on Y.
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Take vg € H,ig(S, Z) with (vg, vo) =2 and v = 2v.
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Denote by A(S,Z) = (H*(S,Z),(, )) the Mukai lattice of S.

Take vp € I:Ia|g(S,Z) with (vo, o) =2 and v = 2.

My (v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v.

Let H be a v-generic polarization on S~ strictly semistable
sheaves are S-equivalent to F @ F’ with F, F’ stable sheaves with
Mukai vector vy ~ Sing(Mp(v)) = Sym?(My(vo)).

Example OG10 (O’Grady)

vo = v(Zz), where Z7 = ideal sheaf of 2 points in S,
Z7 ® Iy is strictly semistable in My (2vp).
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Let S be a K3 surface with polarization H.

Denote by A(S,Z) = (H*(S,Z),(, )) the Mukai lattice of S.

Take vp € I:Ia|g(S,Z) with (vo, o) =2 and v = 2.

My (v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v.

Let H be a v-generic polarization on S~ strictly semistable
sheaves are S-equivalent to F @ F’ with F, F’ stable sheaves with
Mukai vector vy ~ Sing(Mp(v)) = Sym?(My(vo)).

Example OG10 (O’Grady)

vo = v(Zz), where Z7 = ideal sheaf of 2 points in S,
Z7 @ Iz is strictly semistable in My (2vp).
Theorem (O’Grady, Lehn-Sorger)

My(v) has a symplectic resolution M, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ~ 4o OG10.
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K3 category of a cubic fourfold

Proposition (Kuznetsov)

DP(Y) = (Ku(Y), Oy, Oy (1), 0y(2)) where
Ku(Y) :={E € D*(Y) : Hompuyy(Oy (i), E) = 0,Vi=0,1,2}.
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Properties
@ Ku(X) is of K3 type, e.g. the Serre functor of Ku(Y) is [2].
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Ku(Y) :={E € DP(Y) : Hompy(y)(Oy (i), E) = 0,Vi =0,1,2}.
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o (Addington-Thomas) The Mukai lattice H(Ku(Y),Z) of
Ku(Y) is the free abelian group
{k € K(Y)top : Xx([Oy ()], k) =0, forall i =0,1,2} with
intersection form —y and indu~ced weight-two Hodge structure
H20(Ku(Y)) := H3Y(Y), HYY(Ku(Y)) := @p,HPP(Y).

o Hi (Ku(Y)) = A (Ku(Y)) N A(Ku(Y), Z),
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K3 category of a cubic fourfold

Proposition (Kuznetsov)

DP(Y) = (Ku(Y), Oy, Oy(1), Oy (2)) where
Ku(Y) :={E € DP(Y) : Hompy(y)(Oy (i), E) = 0,Vi =0,1,2}.

Properties
@ Ku(X) is of K3 type, e.g. the Serre functor of Ku(Y) is [2].

o (Addington-Thomas) The Mukai lattice H(Ku(Y),Z) of
Ku(Y) is the free abelian group
{k € K(Y)top : Xx([Oy ()], k) =0, forall i =0,1,2} with
intersection form —y and induced weight-two Hodge structure
H2O(Ku(Y)) = H¥(Y), A (Ku(Y)) = @pHPP(Y).

o Hj (Ku(Y)) := A (Ku(Y)) N H(Ku(Y),Z), then

(A1, A0) = Ay = (_21 _21) C H; 1 (Ku(Y)) and there is a
Hodge isometry (A1, A2)t 2 H*(Y, Z)prim-
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Stability conditions on Ku(Y)

Theorem (Bayer, Lahoz, Macri, Nuer, Perry, Stellari)

© Stab(Ku(Y)) # 0. They describe a connected component
Stab'(Ku(Y)) of Stab(Ku(Y)).
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Stability conditions on Ku(Y)

Theorem (Bayer, Lahoz, Macri, Nuer, Perry, Stellari)
© Stab(Ku(Y)) # 0. They describe a connected component
Stab(Ku(Y)) of Stab(Ku(Y)).
Q Given v € H} (Ku(Y)) primitive with v2 > —2 and
o € Stab'(Ku(Y)) v-generic, then the moduli space M,(v) of
o-semistable objects in Ku(Y) with Mukai vector v is a

smooth projective HK manifold of dimension 2n := v? + 2
~er Hilb"(K3).

Theorem (Li, P., Zhao)

FY = Mcf()\l I )\2)
If'Y does not contain a plane, My = M;(2)\1 + \2).
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Main result on O’'Grady spaces

Take vp € Hj,(Ku(Y)) primitive with v¢ =2and v =2u,.
[Alper-Halpern-Leistner-Heinloth] The moduli stack M, (v) has a
good moduli space M := M, (v) which is a proper algebraic space.
Let o € Stab'(Ku(Y)) be v-generic = strictly semistable locus of
M is = Sym?(M,(vp)).

Theorem (Li, P., Zhao)

M has a symplectic resolution M which is a 10-dimensional smooth
projective HK manifold ~ 4or OG10.

A = M, (vp) C M8 = Sym?(M,(v)) C M
© Symplectic resolution: describe the local structure of M at the
worst singularity [Lehn-Sorger]|, [Alper-Hall-Rydh].
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Main result on O’'Grady spaces

Take vp € Hj,(Ku(Y)) primitive with v¢ =2and v =2u,.
[Alper-Halpern-Leistner-Heinloth] The moduli stack M, (v) has a
good moduli space M := M, (v) which is a proper algebraic space.
Let o € Stab'(Ku(Y)) be v-generic = strictly semistable locus of
M is = Sym?(M,(vp)).

Theorem (Li, P., Zhao)

M has a symplectic resolution M which is a 10-dimensional smooth
projective HK manifold ~ 4or OG10.

A = M,(v) C M8 = Sym?(M,(v)) C M
© Symplectic resolution: describe the local structure of M at the
worst singularity [Lehn-Sorger]|, [Alper-Hall-Rydh].
@ Projectivity, deformation type: degeneration to the locus of
cubic fourfolds with Kuznetsov component equivalent to
DP(K3).
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Special case for applications

Vo =M+ X, v=2XA1+2)\ ~ O'ZM—)MZ:MU(V).
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Minst, x = moduli space of rank 2 instanton sheaves on X,

i.e. semistable sheaves with Chern character (2,0, —2,0).
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Minst, x = moduli space of rank 2 instanton sheaves on X,
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Objects in Mins x are in one of the following classes:
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Minst, x = moduli space of rank 2 instanton sheaves on X,

i.e. semistable sheaves with Chern character (2,0, —2,0).

Objects in Mins x are in one of the following classes:

@ Given an elliptic quintic curve I' C X (l.c.i. quintic curve with
trivial canonical bundle, h°(Or) = 1 and (I') = P4).
~ 0 — Ox(—l) — Fr — IF/X(]-) —0
Fr is a rank 2 stable vector bundle.
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@ Given an elliptic quintic curve I' C X (l.c.i. quintic curve with
trivial canonical bundle, h°(Or) = 1 and (I') = P4).
~ 0 — Ox(—l) — Fr — IF/X(]-) —0
Fr is a rank 2 stable vector bundle.

@ Given a smooth conic C C X, let ¢ be the theta
characteristic of C.
~0—= Fc = 0Ox® HO(X,Q(_'(].)) — ec(l) —0
Fc is a rank 2 torsion free stable sheaf.
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Special case for applications

Vo =M+ X, v=2XA1+2)\ ~ O'ZM—)MZ:MU(V).
understand the objects in M.

Why? [Druel, Beauville] Let X be a smooth cubic threefold.

Minst, x = moduli space of rank 2 instanton sheaves on X,

i.e. semistable sheaves with Chern character (2,0, —2,0).

Objects in Mins x are in one of the following classes:

@ Given an elliptic quintic curve I' C X (l.c.i. quintic curve with
trivial canonical bundle, h°(Or) = 1 and (I') = P4).
~ 0 — Ox(—l) — Fr — IF/X(]-) —0
Fr is a rank 2 stable vector bundle.

@ Given a smooth conic C C X, let ¢ be the theta
characteristic of C.
~0—= Fc = 0Ox® HO(X,Q(_'(].)) — ec(l) —0
Fc is a rank 2 torsion free stable sheaf.

© 7y /x ® Iy, x for two lines ¢1,¢, C X is a semistable sheaf.
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Moduli space of instanton sheaves

J2(X) = 1-cycles of degree 2 on X.
Minst x = J2(X), F = co(F).
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Moduli space of instanton sheaves

J2(X) = 1-cycles of degree 2 on X.
Minst x = J2(X), F = co(F).

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space Ming; x is smooth and connected.
The morphism ¢y contracts the locus {Fc, C smooth conic} to
F2 2 Fy, where Fx is the Fano surface of lines in X.

The morphism ¢, is isomorphic to the blow up Blg2(J?(X)) of
J2(X) along F2.
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Moduli space of instanton sheaves

J2(X) = 1-cycles of degree 2 on X.
Minst x = J2(X), F = co(F).

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space Ming; x is smooth and connected.

The morphism ¢y contracts the locus {Fc, C smooth conic} to
F2 2 Fy, where Fx is the Fano surface of lines in X.

The morphism ¢, is isomorphic to the blow up Blg2(J?(X)) of
J2(X) along F?.

Back to the cubic fourfold Y:

Remark

For a smooth hyperplane section i: X < Y and F € Miyg x we
have
Ch(I*F) = 2)\1 + 2.
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Associated objects in Cu(Y)

Db(Y) = ((’)y(—\2),_2(’)y(—1),\leu(Y),k/ Oy>
Roy(-2) Roy(-1) Loy,
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Associated objects in Cu(Y)

Db(Y) = ((’)y(—\2),_2(’)y(—1),\leu(Y),k/ Oy>
Roy(-2) Roy(-1) Loy,

Definition (Projection functor)

pr: Db(Y) — lCu( Y), pr = ROy(—l)ROy(—Z)LOY-
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Associated objects in Ku(Y)

Db(Y) = (Oy(—\2),_j(’)y(—1),\leu(Y),K_/ Oy>
Roy(-2) Roy(-1) Loy,

Definition (Projection functor)

pr: Db(Y) — lCu( Y), pr = ROy(—l)ROy(—Z)L(’)y-

Definition
Given an elliptic quintic curve ' C Y, we define

Er :=pr(Zr/v(1))

where Zr /y is the ideal sheaf of ["in Y.
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Associated objects in Ku(Y)

Db(Y) = (Oy(—\2),_j(’)y(—1),\leu(Y),K_/ Oy>
Roy(-2) Roy(-1) Loy,

Definition (Projection functor)

pr: Db(Y) — lCu( Y), pr = ROy(—l)ROy(—Z)L(’)y-

Definition

Given an elliptic quintic curve ' C Y, we define

Er :=pr(Zr/v(1))

where Zr /y is the ideal sheaf of ["in Y.
Given a smooth conic C C Y, we define

Ec :=pr(Fc¢).
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Moduli space M := M,(2\; + 2)\,)

Theorem (Li, P., Zhao)

Q@ We have Er = i Fr, where i: X < Y is a smooth hyperplane
section.
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Theorem (Li, P., Zhao)
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Q@ For o € Stab'(Ku(Y)), the objects Er, Ec are o-stable.

Consequence: description of an open subvariety in the stable locus
of the moduli space M.
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Moduli space M := M,(2\; + 2)\,)

Theorem (Li, P., Zhao)

Q@ We have Er = i, Fr, where i: X < Y is a smooth hyperplane
section.

Q@ For o € Stab'(Ku(Y)), the objects Er, Ec are o-stable.

Consequence: description of an open subvariety in the stable locus
of the moduli space M.

Strictly semistable locus: Take o € Stabf(Ku(Y)) v-generic.
[Li,P.,Zhao] Py := pr(Zy/x) is o-stable, v(Py) = A1 + X2. So

M8 = Sym?(Fy).
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Moduli space M := M,(2\; + 2)\,)

Theorem (Li, P., Zhao)

Q@ We have Er = i, Fr, where i: X < Y is a smooth hyperplane
section.

Q@ For o € Stab'(Ku(Y)), the objects Er, Ec are o-stable.

Consequence: description of an open subvariety in the stable locus
of the moduli space M.

Strictly semistable locus: Take o € Stabf(Ku(Y)) v-generic.
[Li,P.,Zhao] Py := pr(Zy/x) is o-stable, v(Py) = A1 + X2. So

M8 = Sym?(Fy).

We apply this result to study the relation of M with the (twisted)
Intermediate Jacobian of Y.
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Idea of proof

[Bayer-Lahoz-Macri-Stellari]
Ble(Y)

/ w‘ﬁbration

‘(cy P3
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/ w‘ﬁbration

‘(cy P3

By = even part of the sheaf of Clifford algebras associated to the
conic fibration.
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Idea of proof

[Bayer-Lahoz-Macri-Stellari]
Ble(Y)
/ w‘ﬁbration

‘(cy P3

By = even part of the sheaf of Clifford algebras associated to the
conic fibration.
DP(Coh(PP3, By)) =: DP(P3, By) = (V(Ku(Y)), B1, Ba, B3).
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Idea of proof

[Bayer-Lahoz-Macri-Stellari]
Bl,(Y)

/ wﬁbratlon

{CY

By = even part of the sheaf of Clifford algebras associated to the
conic fibration.

DP(Coh(P3, By)) =: DP(P3, By) = (W(Ku(Y)), B1, B2, Bs).
0,1 tilt-stability condition on DP(IP3, By)
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Idea of proof

[Bayer-Lahoz-Macri-Stellari]
Bl,(Y)

/ wﬁbratlon

{CY

By = even part of the sheaf of Clifford algebras associated to the
conic fibration.

DP(Coh(P3, By)) =: DP(P3, By) = (W(Ku(Y)), B1, B2, Bs).

0q,-1 tilt-stability condition on DP(IP3, By) ~» 0 := 03 _;|xcu(y) for
a< i
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Idea of proof

[Bayer-Lahoz-Macri-Stellari]
Bl,(Y)

/ wﬁbratlon

{CY

By = even part of the sheaf of Clifford algebras associated to the
conic fibration.

DP(Coh(P3, By)) =: DP(P3, By) = (W(Ku(Y)), B1, B2, Bs).

0q,-1 tilt-stability condition on DP(IP3, By) ~» 0 := 03 _;|xcu(y) for

a< g
o'
W(E) is stable for & > 0
no walls
1
4] 3
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Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y
X — Py C (P)Y, Xy~ telP
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Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y
X — Py C (P)Y, Xy~ telP

~~ family of twisted intermediate Jacobians
p:J— Py, JH(X) st

[Donagi-Markman] J has a symplectic form.
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Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y
X — Py C (P)Y, Xy~ telP

~~ family of twisted intermediate Jacobians
p:J— Py, JH(X) st

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a
HK compactification of J, i.e. of a HK J and a Lagrangian fibration

7: J— (P%)Y making the diagram  J<———J to commute.

1)

(P°)Y +— P
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Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y
X — Py C (P)Y, Xy~ telP

~~ family of twisted intermediate Jacobians
p:J— Py, JH(X) st

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a
HK compactification of J, i.e. of a HK J and a Lagrangian fibration

7: J— (P%)Y making the diagram  J<———J to commute.

WJ JP
(P°)Y +——Po
Proved for very general Y by Laza-Sacca-Voisin for the untwisted

family and by Voisin for the twisted family.
Recently, extended by Sacca to every cubic fourfold.
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Application 1

Recall o: M — M. Set 5
Mo := {[Er] € M,T C X C Y elliptic quintic in smooth X} C M.
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We have the rational map defined by the support:

M --» (P%)V defined on My — Py by Er — suppEr.
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Application 1

Recall o: M — M. Set

Mo = {[Er] € M,T € X C Y elliptic quintic in smooth X} C M.
We have the rational map defined by the support:

M --» (P%)V defined on My — Py by Er — suppEr.

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to M with a
Lagrangian fibration compactifying p: J — g, i.e.

Mec—-—>N——J

B(—Po
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Application 1

Recall o: M — M. Set

Mo = {[Er] € M,T € X C Y elliptic quintic in smooth X} C M.
We have the rational map defined by the support:

M --» (P%)V defined on My — Py by Er — suppEr.

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to M with a
Lagrangian fibration compactifying p: J — g, i.e.

Mec—-—>N——J
| |
B(—Po

Combination of results in birational geometry of HK
manifolds [Matsushita].
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Flop between M and N

Minst,p, — Po: relative moduli space of instanton sheaves.
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Flop between M and N

Minst,p, — Po: relative moduli space of instanton sheaves.

Bl_g(J) 5 J = Po: blowup of J along the involution of the
relative Fano surface of lines.
We have Minge p, = Bl_g(J).

BLF(J) =M |nst JPo — 9
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Flop between M and N

Minst,p, — Po: relative moduli space of instanton sheaves.

Bl_g(J) 5 J = Po: blowup of J along the involution of the
relative Fano surface of lines.
We have Minge p, = Bl_g(J).

Bl_r(J) & Minstp, — = + M

| e |

Ne—J M
A
B+——Pg

[Ec] € M +— [Ec] € M by stability, then
¢ 1([Ec]) = {smooth cubic threefolds X > C} C P2.
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Flop between M and N

Minst,p, — Po: relative moduli space of instanton sheaves.

Bl_g(J) 5 J = Po: blowup of J along the involution of the
relative Fano surface of lines.
We have Minge p, = Bl_g(J).

BLF(J) = M, |nst JPo — 9 I\;’
| e |-
Ne—J M
L
B <—DP0
[Ec] € M <— [Ec] € M by stability, then
¢ 1([Ec]) = {smooth cubic threefolds X > C} C P2.

For (¢,X) € —F C J, we have
~1((¢, X)) = {smooth conics residual to £ in X} C P2,
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Flop between M and N

Minst,p, — Po: relative moduli space of instanton sheaves.

Bl_g(J) 5 J = Po: blowup of J along the involution of the
relative Fano surface of lines.
We have Minge p, = Bl_g(J).

BLF(J) = M, |nst JPo — 9 I\;’
bl \ l
Ne—J M
L
B+—Pg
[Ec] € M +— [Ec] € M by stability, then
¢ 1([Ec]) = {smooth cubic threefolds X > C} C P2.
For (¢,X) € —F C J, we have
b=1((¢, X)) = {smooth conics residual to £ in X} C P2.
~ flop along the locus of conics.

Laura Pertusi Cubic fourfolds and O’Grady 10 16 /20



Some remarks

For a very general cubic fourfold Y:

M and N are not isomorphic and N is isomorphic to Voisin's
construction. B

(The Picard rank of M and N is two = there exists a unique HK
compactification of the twisted family with a Lagrangian fibration
structure.)
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Some remarks

For a very general cubic fourfold Y:

M and N are not isomorphic and N is isomorphic to Voisin's
construction. B

(The Picard rank of M and N is two = there exists a unique HK
compactification of the twisted family with a Lagrangian fibration
structure.)

Question: B =~ P57

We only know Py C B and conjecturally the base of a Lagrangian
fibration is a projective space. True for a very general cubic fourfold.
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Application 2

Let C C Hi|b5m(Y) be the connected component of elliptic quintic
curves in Y.
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Let C C Hilbsm(Y) be the connected component of elliptic quintic
curves in Y.
Conjecture (Castravet)

C has maximally rationally connected (MRC) quotient birational to
J.
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Application 2

Let C C Hi|b5m(Y) be the connected component of elliptic quintic
curves in Y.

Conjecture (Castravet)

C has maximally rationally connected (MRC) quotient birational to
J.

Theorem (Li, P., Zhao)
The projection pr: DP(Y) — Ku(Y) induces a rational map

C--» I\;’, [ — pr(Ir/y(].))

which is the MRC fibration of C.
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Given a K3 surface S, take vy € I:Ia|g(S,Z) primitive and v = mv.
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Given a K3 surface S, take vy € I:Ia|g(S,Z) primitive and v = mv.

Theorem (Kaledin-Lehn-Sorger)

If either m > 2 and (vp, vo) > 2 or m > 2 and (vp, vo) > 2 and H is
v-generic, then My(v) does not admit a symplectic resolution.
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Theorem (Arbarello-Sacca)

Case when H is not vg-generic, they construct a symplectic
resolution using quiver varieties.
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Theorem (Arbarello-Sacca)

Case when H is not vg-generic, they construct a symplectic
resolution using quiver varieties.

Do analogous statements hold for moduli spaces of
semistable objects in Kuznetsov components?
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Given a K3 surface S, take vy € I:Ia|g(S,Z) primitive and v = mv.

Theorem (Kaledin-Lehn-Sorger)

If either m > 2 and (vp, vo) > 2 or m > 2 and (vp, vo) > 2 and H is
v-generic, then My(v) does not admit a symplectic resolution.

Theorem (Arbarello-Sacca)
Case when H is not vg-generic, they construct a symplectic

resolution using quiver varieties.

Do analogous statements hold for moduli spaces of
semistable objects in Kuznetsov components?
Theorem (Chen, P., Zhao, in progress)

Let Y be a cubic fourfold and X a Gushel-Mukai fourfold. Then
the Formality Conjecture holds for semistable objects in Ku(Y') and
Ku(X).
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Thanks!
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