Elliptic quintics on cubic fourfolds, O'Grady 10 and Lagrangian fibrations

Laura Pertusi

Dipartimento di Matematica "F. Enriques"
Università degli Studi di Milano

Joint work with Chunyi Li and Xiaolei Zhao (arXiv:2007.14108)

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form.

- (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(2) (Beauville) $K^{\prime}{ }^{n}(A)$ where A is an abelian surface, $n \geq 2$
- (O'Grady) 10-dimensional example OG10;
- (O'Grady) 6-dimensional example OG6.

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

 dim 2: K3 surfaces.$\operatorname{dim}>2: 4$ deformation classes are known

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K 3 surfaces.
dim >2: 4 deformation classes are known.

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K3 surfaces.
dim > 2: 4 deformation classes are known.
(1) (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(3) (O'Grady) 10-dimensional example OG10;

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K 3 surfaces.
dim > 2: 4 deformation classes are known.
(1) (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(2) (Beauville) $\operatorname{Kum}^{n}(A)$ where A is an abelian surface, $n \geq 2$;
(a) (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K 3 surfaces.
dim > 2: 4 deformation classes are known.
(1) (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(2) (Beauville) $\mathrm{Kum}^{n}(A)$ where A is an abelian surface, $n \geq 2$;
(3) (O'Grady) 10-dimensional example OG10;

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K3 surfaces.
dim > 2: 4 deformation classes are known.
(1) (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(2) (Beauville) $\mathrm{Kum}^{n}(A)$ where A is an abelian surface, $n \geq 2$;
(3) (O'Grady) 10-dimensional example OG10;
(4) (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler manifold X with $H^{2,0}(X)=\mathbb{C} \eta$, where η is a symplectic form. \rightsquigarrow projective HK manifolds.

Examples

dim 2: K3 surfaces.
dim > 2: 4 deformation classes are known.
(1) (Beauville) $\operatorname{Hilb}^{n}(S)$ where S is a K3 surface, $n \geq 2$;
(2) (Beauville) $\mathrm{Kum}^{n}(A)$ where A is an abelian surface, $n \geq 2$;
(3) (O'Grady) 10-dimensional example OG10;
(4) (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
3. (n'Grady I ehn-Soroer) Symnlectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

> Surprising: cubic fourfolds have many associated HK manifolds A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}
(2) (Lehn-Lehn-Sorger-van Straten) HK eightfold M_{Y} constructed out of twisted cubic curves, for Y not containing a plane $\sim_{\text {def }} \mathrm{Hilb}^{4}(\mathrm{~K} 3)$

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.
((Lehn-Lehn-Sorger-van Straten) HK eightfold M_{Y} constructed out of twisted cubic curves, for Y not containing a plane

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
(3) (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

Surprising: cubic fourfolds have many associated HK manifolds

 A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.- (Beauville-Donagi)Fano variety F_{Y} parametrizing lines it
((Lehn-Lehn-Sorger-van Straten) HK eightfold M_{Y} constructed out of twisted cubic curves, for Y not containing a plane

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
(3) (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

Surprising: cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
(3) (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

Surprising: cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.
(1) (Beauville-Donagi) Fano variety F_{Y} parametrizing lines in Y $\sim_{\text {def }} \mathrm{Hilb}^{2}(\mathrm{~K} 3)$.

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
(3) (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

Surprising: cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.
(1) (Beauville-Donagi) Fano variety F_{Y} parametrizing lines in Y $\sim_{\text {def }} \operatorname{Hilb}^{2}(\mathrm{~K} 3)$.
(2) (Lehn-Lehn-Sorger-van Straten) HK eightfold M_{Y} constructed out of twisted cubic curves, for Y not containing a plane $\sim_{\text {def }} \mathrm{Hilb}^{4}(\mathrm{~K} 3)$.

More on Examples (1) and (3)

Let S be a K3 surface.
(1) (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \quad \sim_{\text {def }} \operatorname{Hilb}^{n}(S)$.
(3) (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v=2 v_{0}$, $v_{0}^{2}=2 \quad \sim_{\text {def }}$ OG10.

Surprising: cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^{5} over \mathbb{C}.
(1) (Beauville-Donagi) Fano variety F_{Y} parametrizing lines in Y $\sim_{\text {def }} \operatorname{Hilb}^{2}(\mathrm{~K} 3)$.
(2) (Lehn-Lehn-Sorger-van Straten) HK eightfold M_{Y} constructed out of twisted cubic curves, for Y not containing a plane $\sim_{\text {def }} \mathrm{Hilb}^{4}(\mathrm{~K} 3)$.
(3) (Laza-Saccà-Voisin) Intermediate Jacobian of $Y \quad \sim_{\text {def }}$ OG10.

Today

Why HK manifolds from cubic fourfolds?

> OG10 as desingularizations of moduli spaces of semistable

Today

Why HK manifolds from cubic fourfolds?

By the work of Kuznetsov there is a subcategory of K 3 type in $\mathrm{D}^{\mathrm{b}}(Y):=\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(Y))$, denoted by $\mathcal{K} u(Y)$.

Today

Why HK manifolds from cubic fourfolds?
By the work of Kuznetsov there is a subcategory of K 3 type in $\mathrm{D}^{\mathrm{b}}(Y):=\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(Y))$, denoted by $\mathcal{K} u(Y)$.

Our goal

(1) Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in $\mathcal{K} u(Y)$.
(1) Intermediate Jacobian of Y;

Today

Why HK manifolds from cubic fourfolds?
By the work of Kuznetsov there is a subcategory of K 3 type in $\mathrm{D}^{\mathrm{b}}(Y):=\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(Y))$, denoted by $\mathcal{K} u(Y)$.

Our goal

(1) Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in $\mathcal{K} u(Y)$.
(2) Relate them to the geometry of Y :
(1) Intermediate Jacobian of Y;
(2) Hilbert scheme of elliptic quintic curves on Y.

OG10

Let S be a K3 surface with polarization H.

OG10

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.

OG10

Let S be a K3 surface with polarization H.
Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.
Take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$.

OG10

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S. Take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$. $M_{H}(v)=$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

OG10

Let S be a K3 surface with polarization H.
Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.
Take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$.
$M_{H}(v)=$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.
Let H be a v-generic polarization on S

OG10

Let S be a K3 surface with polarization H.
Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.
Take $v_{0} \in \tilde{H}_{\mathrm{alg}}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$.
$M_{H}(v)=$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.
Let H be a v-generic polarization on $S \rightsquigarrow$ strictly semistable
 Mukai vector $v_{0} \rightsquigarrow \operatorname{Sing}\left(M_{H}(v)\right) \cong \operatorname{Sym}^{2}\left(M_{H}\left(v_{0}\right)\right)$.

OG10

Let S be a K3 surface with polarization H.
Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.
Take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$.
$M_{H}(v)=$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.
Let H be a v-generic polarization on $S \rightsquigarrow$ strictly semistable
 Mukai vector $v_{0} \rightsquigarrow \operatorname{Sing}\left(M_{H}(v)\right) \cong \operatorname{Sym}^{2}\left(M_{H}\left(v_{0}\right)\right)$.

Example OG10 (O'Grady)

$v_{0}=v\left(\mathcal{I}_{Z}\right)$, where $\mathcal{I}_{Z}=$ ideal sheaf of 2 points in S,
$\mathcal{I}_{Z} \oplus \mathcal{I}_{Z^{\prime}}$ is strictly semistable in $M_{H}\left(2 v_{0}\right)$.

OG10

Let S be a K3 surface with polarization H.
Denote by $\tilde{H}(S, \mathbb{Z})=\left(H^{*}(S, \mathbb{Z}),\langle\rangle,\right)$ the Mukai lattice of S.
Take $v_{0} \in \tilde{H}_{\mathrm{alg}}(S, \mathbb{Z})$ with $\left\langle v_{0}, v_{0}\right\rangle=2$ and $v=2 v_{0}$.
$M_{H}(v)=$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.
Let H be a v-generic polarization on $S \rightsquigarrow$ strictly semistable
 Mukai vector $v_{0} \rightsquigarrow \operatorname{Sing}\left(M_{H}(v)\right) \cong \operatorname{Sym}^{2}\left(M_{H}\left(v_{0}\right)\right)$.

Example OG10 (O'Grady)

$v_{0}=v\left(\mathcal{I}_{Z}\right)$, where $\mathcal{I}_{Z}=$ ideal sheaf of 2 points in S,
$\mathcal{I}_{Z} \oplus \mathcal{I}_{Z^{\prime}}$ is strictly semistable in $M_{H}\left(2 v_{0}\right)$.

Theorem (O'Grady, Lehn-Sorger)

$M_{H}(v)$ has a symplectic resolution \tilde{M}, obtained by blowing up the singular locus with the reduced scheme structure, which is a projective HK 10-fold $\sim_{\text {def }} \mathrm{OG} 10$.

K3 category of a cubic fourfold

> Proposition (Kuznetsov)
> $\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{K} u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$ where
> $\mathcal{K} u(Y):=\left\{E \in \mathrm{D}^{\mathrm{b}}(Y): \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(Y)}\left(\mathcal{O}_{Y}(i), E\right)=0, \forall i=0,1,2\right\}$.

- (Addington-Thomas) The Mukai lattice $\tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$ of $\mathcal{K} u(Y)$ is the free abelian group $\left\{\kappa \in K(Y)_{\text {top }}: \chi\left(\left[O_{Y}(i)\right], k\right)=0\right.$, for all $\left.i=0,1,2\right\}$ with
intersection form $-\chi$ and induced weight-two Hodge structure $\tilde{H}^{2,0}(\mathcal{K} u(Y)):=H^{3,1}(Y), \quad \tilde{H}^{1,1}(\mathcal{K} u(Y)):=\oplus_{p} H^{p, p}(Y)$

K3 category of a cubic fourfold

Proposition (Kuznetsov)

$\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{K} u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$ where
$\mathcal{K} u(Y):=\left\{E \in \mathrm{D}^{\mathrm{b}}(Y): \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(Y)}\left(\mathcal{O}_{Y}(i), E\right)=0, \forall i=0,1,2\right\}$.

Properties

- $\mathcal{K} u(X)$ is of K 3 type, e.g. the Serre functor of $\mathcal{K} u(Y)$ is [2].

K3 category of a cubic fourfold

Proposition (Kuznetsov)

$\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{K} u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$ where
$\mathcal{K} u(Y):=\left\{E \in \mathrm{D}^{\mathrm{b}}(Y): \operatorname{Hom}_{\mathrm{D}}(Y)\left(\mathcal{O}_{Y}(i), E\right)=0, \forall i=0,1,2\right\}$.

Properties

- $\mathcal{K} u(X)$ is of K 3 type, e.g. the Serre functor of $\mathcal{K} u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice $\tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$ of $\mathcal{K} u(Y)$ is the free abelian group
$\left\{\kappa \in K(Y)_{\text {top }}: \chi\left(\left[\mathcal{O}_{Y}(i)\right], \kappa\right)=0\right.$, for all $\left.i=0,1,2\right\}$ with intersection form $-\chi$ and induced weight-two Hodge structure $\tilde{H}^{2,0}(\mathcal{K} u(Y)):=H^{3,1}(Y), \quad \tilde{H}^{1,1}(\mathcal{K} u(Y)):=\oplus_{p} H^{p, p}(Y)$.

K3 category of a cubic fourfold

Proposition (Kuznetsov)

$\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{K} u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$ where
$\mathcal{K} u(Y):=\left\{E \in \mathrm{D}^{\mathrm{b}}(Y): \operatorname{Hom}_{\mathrm{D}}(Y)\left(\mathcal{O}_{Y}(i), E\right)=0, \forall i=0,1,2\right\}$.

Properties

- $\mathcal{K} u(X)$ is of K 3 type, e.g. the Serre functor of $\mathcal{K} u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice $\tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$ of $\mathcal{K} u(Y)$ is the free abelian group
$\left\{\kappa \in K(Y)_{\text {top }}: \chi\left(\left[\mathcal{O}_{Y}(i)\right], \kappa\right)=0\right.$, for all $\left.i=0,1,2\right\}$ with intersection form $-\chi$ and induced weight-two Hodge structure $\tilde{H}^{2,0}(\mathcal{K} u(Y)):=H^{3,1}(Y), \quad \tilde{H}^{1,1}(\mathcal{K} u(Y)):=\oplus_{p} H^{p, p}(Y)$.
- $H_{\text {alg }}^{*}(\mathcal{K} u(Y)):=\tilde{H}^{1,1}(\mathcal{K} u(Y)) \cap \tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$,

K3 category of a cubic fourfold

Proposition (Kuznetsov)

$\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{K} u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$ where
$\mathcal{K} u(Y):=\left\{E \in \mathrm{D}^{\mathrm{b}}(Y): \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(Y)}\left(\mathcal{O}_{Y}(i), E\right)=0, \forall i=0,1,2\right\}$.

Properties

- $\mathcal{K} u(X)$ is of K 3 type, e.g. the Serre functor of $\mathcal{K} u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice $\tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$ of $\mathcal{K} u(Y)$ is the free abelian group
$\left\{\kappa \in K(Y)_{\text {top }}: \chi\left(\left[\mathcal{O}_{Y}(i)\right], \kappa\right)=0\right.$, for all $\left.i=0,1,2\right\}$ with intersection form $-\chi$ and induced weight-two Hodge structure $\tilde{H}^{2,0}(\mathcal{K} u(Y)):=H^{3,1}(Y), \quad \tilde{H}^{1,1}(\mathcal{K} u(Y)):=\oplus_{p} H^{p, p}(Y)$.
- $H_{\text {alg }}^{*}(\mathcal{K} u(Y)):=\tilde{H}^{1,1}(\mathcal{K} u(Y)) \cap \tilde{H}(\mathcal{K} u(Y), \mathbb{Z})$, then
$\left\langle\lambda_{1}, \lambda_{2}\right\rangle \cong A_{2}:=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \subset H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ and there is a
Hodge isometry $\left\langle\lambda_{1}, \lambda_{2}\right\rangle^{\perp} \cong H^{4}(Y, \mathbb{Z})_{\text {prim }}$.

Stability conditions on $\mathcal{K} u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)
(1) $\operatorname{Stab}(\mathcal{K} u(Y)) \neq \emptyset$. They describe a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ of $\operatorname{Stab}(\mathcal{K} u(Y))$.

Stability conditions on $\mathcal{K} u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)

(1) $\operatorname{Stab}(\mathcal{K} u(Y)) \neq \emptyset$. They describe a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ of $\operatorname{Stab}(\mathcal{K} u(Y))$.
(2) Given $v \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v^{2} \geq-2$ and $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y)) v$-generic, then the moduli space $M_{\sigma}(v)$ of σ-semistable objects in $\mathcal{K} u(Y)$ with Mukai vector v is a smooth projective HK manifold of dimension $2 n:=v^{2}+2$ $\sim_{d e f} \operatorname{Hilb}^{n}(K 3)$.

Stability conditions on $\mathcal{K} u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)

(1) $\operatorname{Stab}(\mathcal{K} u(Y)) \neq \emptyset$. They describe a connected component $\operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ of $\operatorname{Stab}(\mathcal{K} u(Y))$.
(2) Given $v \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v^{2} \geq-2$ and $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y)) v$-generic, then the moduli space $M_{\sigma}(v)$ of σ-semistable objects in $\mathcal{K} u(Y)$ with Mukai vector v is a smooth projective HK manifold of dimension $2 n:=v^{2}+2$ $\sim_{\text {def }} \operatorname{Hilb}^{n}(K 3)$.

Theorem (Li, P., Zhao)
$F_{Y} \cong M_{\sigma}\left(\lambda_{1}+\lambda_{2}\right)$.
If Y does not contain a plane, $M_{Y} \cong M_{\sigma}\left(2 \lambda_{1}+\lambda_{2}\right)$.

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$.

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space.

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right)$.

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{a} \text { a }}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right)$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold $\sim_{\text {def }}$ OG10.

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{a} \text { a }}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right)$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold $\sim_{\text {def }}$ OG10.
Idea of proof:

$$
\Delta \cong M_{\sigma}\left(v_{0}\right) \subset M^{\text {sing }} \cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right) \subset M
$$

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{a} \text { a }}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right)$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold $\sim_{\text {def }}$ OG10.

Idea of proof:

$$
\Delta \cong M_{\sigma}\left(v_{0}\right) \subset M^{\text {sing }} \cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right) \subset M
$$

(1) Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].

Main result on O'Grady spaces

Take $v_{0} \in H_{\mathrm{alg}}^{*}(\mathcal{K} u(Y))$ primitive with $v_{0}^{2}=2$ and $v=2 v_{0}$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M:=M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right)$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold $\sim_{\text {def }}$ OG10.

Idea of proof:

$$
\Delta \cong M_{\sigma}\left(v_{0}\right) \subset M^{\text {sing }} \cong \operatorname{Sym}^{2}\left(M_{\sigma}\left(v_{0}\right)\right) \subset M
$$

(1) Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
(2) Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to $\mathrm{D}^{\mathrm{b}}(\mathrm{K} 3)$.

Special case for applications

$$
v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v) .
$$

- Given an elliptic quintic curve $\Gamma \subset X$ (I.c.i. quintic curve with
\square

F_{Γ} is a rank 2 stable vector bundle.
(2) Given a smooth conic $C \subset X$, let θ_{C} be the theta
characteristic of C.

F_{C} is a rank 2 torsion free stable sheaf.
- $I_{\ell_{1} / X} \oplus I_{\ell_{2} / X}$ for two lines $\ell_{1}, \ell_{2} \subset X$ is a semistable sheaf.

Special case for applications

$$
v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v) .
$$

Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold $M_{\text {inst, } X}=$ moduli space of rank 2 instanton sheaves on X,

Special case for applications

$$
v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v) .
$$

Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold.

Special case for applications

$$
v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v) .
$$

Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold. $M_{\text {inst }, X}=$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character ($2,0,-2,0$).

Objects in $M_{\text {inst.X }}$ are in one of the following classes
(1) Given an elliptic quintic curve $\Gamma \subset X$ (I.c.i. quintic curve with trivial canonical bundle, $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$ and $\left.\langle\Gamma\rangle \cong \mathbb{P}^{4}\right)$.

F_{Γ} is a rank 2 stable vector bundle.

(2) \square characteristic of C.

Special case for applications

$v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v)$.
Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold. $M_{\text {inst }, X}=$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character ($2,0,-2,0$).

Objects in $M_{\text {inst }, X}$ are in one of the following classes:

Special case for applications

$v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v)$.
Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold.
$M_{\text {inst }, X}=$ moduli space of rank 2 instanton sheaves on X,
i.e. semistable sheaves with Chern character ($2,0,-2,0$).

Objects in $M_{\text {inst, } X}$ are in one of the following classes:
(1) Given an elliptic quintic curve $\Gamma \subset X$ (I.c.i. quintic curve with trivial canonical bundle, $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$ and $\left.\langle\Gamma\rangle \cong \mathbb{P}^{4}\right)$.
$\rightsquigarrow 0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma / X}(1) \rightarrow 0$
F_{Γ} is a rank 2 stable vector bundle.

Special case for applications

$v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v)$.
Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold.
$M_{\text {inst }, X}=$ moduli space of rank 2 instanton sheaves on X,
i.e. semistable sheaves with Chern character ($2,0,-2,0$).

Objects in $M_{\text {inst, } X}$ are in one of the following classes:
(1) Given an elliptic quintic curve $\Gamma \subset X$ (I.c.i. quintic curve with trivial canonical bundle, $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$ and $\left.\langle\Gamma\rangle \cong \mathbb{P}^{4}\right)$.
$\rightsquigarrow 0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma / X}(1) \rightarrow 0$
F_{Γ} is a rank 2 stable vector bundle.
(2) Given a smooth conic $C \subset X$, let θ_{C} be the theta characteristic of C.
$\rightsquigarrow 0 \rightarrow F_{C} \rightarrow \mathcal{O}_{X} \otimes H^{0}\left(X, \theta_{C}(1)\right) \rightarrow \theta_{C}(1) \rightarrow 0$
F_{C} is a rank 2 torsion free stable sheaf.

Special case for applications

$v_{0}=\lambda_{1}+\lambda_{2}, v=2 \lambda_{1}+2 \lambda_{2} \quad \rightsquigarrow \quad \sigma: \tilde{M} \rightarrow M:=M_{\sigma}(v)$.
Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold.
$M_{\text {inst }, X}=$ moduli space of rank 2 instanton sheaves on X,
i.e. semistable sheaves with Chern character ($2,0,-2,0$).

Objects in $M_{\text {inst, } X}$ are in one of the following classes:
(1) Given an elliptic quintic curve $\Gamma \subset X$ (I.c.i. quintic curve with trivial canonical bundle, $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$ and $\left.\langle\Gamma\rangle \cong \mathbb{P}^{4}\right)$.
$\rightsquigarrow 0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma / X}(1) \rightarrow 0$
F_{Γ} is a rank 2 stable vector bundle.
(2) Given a smooth conic $C \subset X$, let θ_{C} be the theta characteristic of C.
$\rightsquigarrow 0 \rightarrow F_{C} \rightarrow \mathcal{O}_{X} \otimes H^{0}\left(X, \theta_{C}(1)\right) \rightarrow \theta_{C}(1) \rightarrow 0$
F_{C} is a rank 2 torsion free stable sheaf.
(3) $\mathcal{I}_{\ell_{1} / X} \oplus \mathcal{I}_{\ell_{2} / X}$ for two lines $\ell_{1}, \ell_{2} \subset X$ is a semistable sheaf.

Moduli space of instanton sheaves

$J^{2}(X)=1$-cycles of degree 2 on X.
$M_{\text {inst }, X} \xrightarrow{\mathfrak{c}_{2}} J^{2}(X), \quad F \mapsto c_{2}(F)$.

Moduli space of instanton sheaves

$J^{2}(X)=1$-cycles of degree 2 on X.
$M_{\text {inst }, X} \xrightarrow{\mathfrak{c}_{2}} J^{2}(X), \quad F \mapsto c_{2}(F)$.
Theorem (Druel, Markushevich-Tikhomirov, Beauville)
The moduli space $M_{\mathrm{inst}, X}$ is smooth and connected.
The morphism \mathfrak{c}_{2} contracts the locus $\left\{F_{C}, C\right.$ smooth conic $\}$ to $F^{2} \cong F_{X}$, where F_{X} is the Fano surface of lines in X.
The morphism \mathfrak{c}_{2} is isomorphic to the blow up $\mathrm{Bl}_{F^{2}}\left(J^{2}(X)\right)$ of $J^{2}(X)$ along F^{2}.

Moduli space of instanton sheaves

$J^{2}(X)=1$-cycles of degree 2 on X.
$M_{\text {inst }, X} \xrightarrow{\mathfrak{c}_{2}} J^{2}(X), \quad F \mapsto c_{2}(F)$.
Theorem (Druel, Markushevich-Tikhomirov, Beauville)
The moduli space $M_{\mathrm{inst}, X}$ is smooth and connected.
The morphism \mathfrak{c}_{2} contracts the locus $\left\{F_{C}, C\right.$ smooth conic $\}$ to $F^{2} \cong F_{X}$, where F_{X} is the Fano surface of lines in X.
The morphism \mathfrak{c}_{2} is isomorphic to the blow up $\mathrm{BI}_{F^{2}}\left(J^{2}(X)\right)$ of $J^{2}(X)$ along F^{2}.

Back to the cubic fourfold Y :

Remark

For a smooth hyperplane section $i: X \hookrightarrow Y$ and $F \in M_{\text {inst }, X}$ we have

$$
\operatorname{ch}\left(i_{*} F\right)=2 \lambda_{1}+2 \lambda_{2}
$$

Associated objects in $\mathcal{K} u(Y)$

Given an elliptic quintic curve $\Gamma \subset Y$, we define

where $\mathcal{I}_{\Gamma / Y}$ is the ideal sheaf of Γ in Y
Given a smooth conic $C \subset Y$, we define

Associated objects in $\mathcal{K} u(Y)$

Definition (Projection functor)

pr: $\mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathcal{K} u(Y), \mathrm{pr}=\mathrm{R}_{\mathcal{O}_{Y(-1)}} \mathrm{R}_{\mathcal{O}_{Y(-2)}} \mathrm{L}_{\mathcal{O}_{Y}}$.
where $\mathcal{I}_{\Gamma / Y}$ is the ideal sheaf of Γ in Y
Given a smooth conic $C \subset Y$, we define

$$
E_{C}:=\operatorname{pr}\left(F_{C}\right) .
$$

Associated objects in $\mathcal{K} u(Y)$

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{O}_{Y} \underset{\mathrm{R}_{\mathcal{O}_{Y}(-2)}^{(-2),}}{\mathcal{O}_{Y}(-1)}{\underset{\mathrm{R}_{\mathcal{O}_{Y}(-1)}}{,} \quad \mathcal{K}}^{\mathcal{K}} u(Y) \underset{\mathrm{L}_{\mathcal{O}_{Y}}}{,} \mathcal{O}_{Y}\right\rangle
$$

Definition (Projection functor)

pr: $\mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathcal{K} u(Y), \mathrm{pr}=\mathrm{R}_{\mathcal{O}_{Y}(-1)} \mathrm{R}_{\mathcal{O}_{Y}(-2)} \mathrm{L}_{\mathcal{O}_{Y}}$.

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

$$
E_{\Gamma}:=\operatorname{pr}\left(\mathcal{I}_{\Gamma / Y}(1)\right)
$$

where $\mathcal{I}_{\Gamma / Y}$ is the ideal sheaf of Γ in Y.

Associated objects in $\mathcal{K} u(Y)$

Definition (Projection functor)

pr: $\mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathcal{K} u(Y)$, pr $=\mathrm{R}_{\mathcal{O}_{Y(-1)}} \mathrm{R}_{\mathcal{O}_{Y(-2)}} \mathrm{L}_{\mathcal{O}_{Y}}$.

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

$$
E_{\Gamma}:=\operatorname{pr}\left(\mathcal{I}_{\Gamma / Y}(1)\right)
$$

where $\mathcal{I}_{\Gamma / Y}$ is the ideal sheaf of Γ in Y.
Given a smooth conic $C \subset Y$, we define

$$
E_{C}:=\operatorname{pr}\left(F_{C}\right)
$$

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)
(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.

Consequence: description of an open subvariety in the stable locus

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)
(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
(2) For $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$, the objects E_{Γ}, E_{C} are σ-stable.

Consequence: description of an open subvariety in the stable locus

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)

(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
(2) For $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$, the objects E_{Γ}, E_{C} are σ-stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)

(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
(2) For $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$, the objects E_{Γ}, E_{C} are σ-stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.
Strictly semistable locus: Take $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y)) v$-generic.

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)

(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
(2) For $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$, the objects E_{Γ}, E_{C} are σ-stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.
Strictly semistable locus: Take $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y)) v$-generic. [Li,P.,Zhao] $P_{\ell}:=\operatorname{pr}\left(\mathcal{I}_{\ell / X}\right)$ is σ-stable, $v\left(P_{\ell}\right)=\lambda_{1}+\lambda_{2}$. So

$$
M^{\text {sing }} \cong \operatorname{Sym}^{2}\left(F_{Y}\right)
$$

Moduli space $M:=M_{\sigma}\left(2 \lambda_{1}+2 \lambda_{2}\right)$

Theorem (Li, P., Zhao)

(1) We have $E_{\Gamma} \cong i_{*} F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
(2) For $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y))$, the objects E_{Γ}, E_{C} are σ-stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.
Strictly semistable locus: Take $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K} u(Y)) v$-generic. [Li,P.,Zhao] $P_{\ell}:=\operatorname{pr}\left(\mathcal{I}_{\ell / X}\right)$ is σ-stable, $v\left(P_{\ell}\right)=\lambda_{1}+\lambda_{2}$. So

$$
M^{\text {sing }} \cong \operatorname{Sym}^{2}\left(F_{Y}\right)
$$

We apply this result to study the relation of M with the (twisted) Intermediate Jacobian of Y.

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

$\mathcal{B}_{0}=$ even part of the sheaf of Clifford algebras associated to the conic fibration.

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

$\mathcal{B}_{0}=$ even part of the sheaf of Clifford algebras associated to the conic fibration.
$\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)\right)=: \mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)=\left\langle\Psi(\mathcal{K} u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}\right\rangle$.

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

$\mathcal{B}_{0}=$ even part of the sheaf of Clifford algebras associated to the conic fibration.
$\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)\right)=: \mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)=\left\langle\Psi(\mathcal{K} u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}\right\rangle$.
$\sigma_{\alpha,-1}$ tilt-stability condition on $\mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)$

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

$\mathcal{B}_{0}=$ even part of the sheaf of Clifford algebras associated to the conic fibration.
$\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)\right)=: \mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)=\left\langle\Psi(\mathcal{K} u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}\right\rangle$.
$\sigma_{\alpha,-1}$ tilt-stability condition on $\mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right) \rightsquigarrow \sigma:=\sigma_{\alpha,-1}^{0} \mid \mathcal{K} u(Y)$ for $\alpha<\frac{1}{4}$.

Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

$\mathcal{B}_{0}=$ even part of the sheaf of Clifford algebras associated to the conic fibration.
$\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)\right)=: \mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)=\left\langle\Psi(\mathcal{K} u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}\right\rangle$.
$\sigma_{\alpha,-1}$ tilt-stability condition on $\mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right) \rightsquigarrow \sigma:=\sigma_{\alpha,-1}^{0} \mid \mathcal{K} u(Y)$ for $\alpha<\frac{1}{4}$.

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y

$$
\mathcal{X} \rightarrow \mathbb{P}_{0} \subset\left(\mathbb{P}^{5}\right)^{\vee}, \mathcal{X}_{t} \mapsto t \in \mathbb{P}_{0}
$$

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y

$$
\mathcal{X} \rightarrow \mathbb{P}_{0} \subset\left(\mathbb{P}^{5}\right)^{\vee}, \mathcal{X}_{t} \mapsto t \in \mathbb{P}_{0}
$$

\rightsquigarrow family of twisted intermediate Jacobians

$$
p: J \rightarrow \mathbb{P}_{0}, J^{1}\left(\mathcal{X}_{t}\right) \mapsto t
$$

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y

$$
\mathcal{X} \rightarrow \mathbb{P}_{0} \subset\left(\mathbb{P}^{5}\right)^{\vee}, \mathcal{X}_{t} \mapsto t \in \mathbb{P}_{0}
$$

\rightsquigarrow family of twisted intermediate Jacobians

$$
p: J \rightarrow \mathbb{P}_{0}, J^{1}\left(\mathcal{X}_{t}\right) \mapsto t
$$

[Donagi-Markman] J has a symplectic form.

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y

$$
\mathcal{X} \rightarrow \mathbb{P}_{0} \subset\left(\mathbb{P}^{5}\right)^{\vee}, \mathcal{X}_{t} \mapsto t \in \mathbb{P}_{0}
$$

\rightsquigarrow family of twisted intermediate Jacobians

$$
p: J \rightarrow \mathbb{P}_{0}, J^{1}\left(\mathcal{X}_{t}\right) \mapsto t
$$

[Donagi-Markman] J has a symplectic form.
A long standing question was the existence of a HK compactification of J, i.e. of a HK \bar{J} and a Lagrangian fibration $\pi: \bar{J} \rightarrow\left(\mathbb{P}^{5}\right)^{\vee}$ making the diagram $\quad \bar{J} \longleftarrow J$ to commute.

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y

$$
\mathcal{X} \rightarrow \mathbb{P}_{0} \subset\left(\mathbb{P}^{5}\right)^{\vee}, \mathcal{X}_{t} \mapsto t \in \mathbb{P}_{0}
$$

\rightsquigarrow family of twisted intermediate Jacobians

$$
p: J \rightarrow \mathbb{P}_{0}, J^{1}\left(\mathcal{X}_{t}\right) \mapsto t
$$

[Donagi-Markman] J has a symplectic form.
A long standing question was the existence of a HK compactification of J, i.e. of a $\mathrm{HK} \bar{J}$ and a Lagrangian fibration $\pi: \bar{J} \rightarrow\left(\mathbb{P}^{5}\right)^{\vee}$ making the diagram $\quad \bar{J} \longleftarrow J$ to commute.

Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family.
Recently, extended by Saccà to every cubic fourfold.

Application 1

Recall $\sigma: \tilde{M} \rightarrow M$. Set
$M_{0}:=\left\{\left[E_{\Gamma}\right] \in M, \Gamma \subset X \subset Y\right.$ elliptic quintic in smooth $\left.X\right\} \subset \tilde{M}$.

Application 1

Recall $\sigma: \tilde{M} \rightarrow M$. Set
$M_{0}:=\left\{\left[E_{\Gamma}\right] \in M, \Gamma \subset X \subset Y\right.$ elliptic quintic in smooth $\left.X\right\} \subset \tilde{M}$.
We have the rational map defined by the support:
$\tilde{M} \rightarrow\left(\mathbb{P}^{5}\right)^{\vee}$ defined on $M_{0} \rightarrow \mathbb{P}_{0}$ by $E_{\Gamma} \mapsto \operatorname{supp} E_{\Gamma}$.

Application 1

Recall $\sigma: \tilde{M} \rightarrow M$. Set
$M_{0}:=\left\{\left[E_{\Gamma}\right] \in M, \Gamma \subset X \subset Y\right.$ elliptic quintic in smooth $\left.X\right\} \subset \tilde{M}$.
We have the rational map defined by the support:
$\tilde{M} \longrightarrow\left(\mathbb{P}^{5}\right)^{\vee}$ defined on $M_{0} \rightarrow \mathbb{P}_{0}$ by $E_{\Gamma} \mapsto \operatorname{supp} E_{\Gamma}$.

Theorem (Li, P., Zhao)

There exists a projective $H K$ manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \rightarrow \mathbb{P}_{0}$, i.e.

Combination of results in birational geometry of HK
manifolds [Matsushital

Application 1

Recall $\sigma: \tilde{M} \rightarrow M$. Set
$M_{0}:=\left\{\left[E_{\Gamma}\right] \in M, \Gamma \subset X \subset Y\right.$ elliptic quintic in smooth $\left.X\right\} \subset \tilde{M}$.
We have the rational map defined by the support:
$\tilde{M} \longrightarrow\left(\mathbb{P}^{5}\right)^{\vee}$ defined on $M_{0} \rightarrow \mathbb{P}_{0}$ by $E_{\Gamma} \mapsto \operatorname{supp} E_{\Gamma}$.

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \rightarrow \mathbb{P}_{0}$, i.e.

Idea of proof: Combination of results in birational geometry of HK manifolds [Matsushita].

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves. $B I_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.
$B I_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.
We have $M_{\text {inst }, \mathbb{P}_{0}} \cong \mathrm{Bl}_{-F}(J)$.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.
$\mathrm{BI}_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.
We have $M_{\text {inst }, \mathbb{P}_{0}} \cong \mathrm{Bl}_{-F}(J)$.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.
$\mathrm{BI}_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.
We have $M_{\text {inst }, \mathbb{P}_{0}} \cong \mathrm{Bl}_{-F}(J)$.

$\left[E_{C}\right] \in M \longleftrightarrow\left[E_{C}\right] \in \tilde{M}$ by stability, then $\varphi^{-1}\left(\left[E_{C}\right]\right)=\{$ smooth cubic threefolds $X \supset C\} \subset \mathbb{P}^{2}$.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.
$\mathrm{BI}_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.
We have $M_{\text {inst }, \mathbb{P}_{0}} \cong \mathrm{Bl}_{-F}(J)$.

$\left[E_{C}\right] \in M \longleftrightarrow\left[E_{C}\right] \in \tilde{M}$ by stability, then $\varphi^{-1}\left(\left[E_{C}\right]\right)=\{$ smooth cubic threefolds $X \supset C\} \subset \mathbb{P}^{2}$.
For $(\ell, X) \in-F \subset J$, we have $b^{-1}((\ell, X))=\{$ smooth conics residual to ℓ in $X\} \subset \mathbb{P}^{2}$.

Flop between \tilde{M} and N

$M_{\text {inst }, \mathbb{P}_{0}} \rightarrow \mathbb{P}_{0}:$ relative moduli space of instanton sheaves.
$\mathrm{BI}_{-F}(J) \xrightarrow{b} J \rightarrow \mathbb{P}_{0}$: blowup of J along the involution of the relative Fano surface of lines.
We have $M_{\text {inst }, \mathbb{P}_{0}} \cong \mathrm{Bl}_{-F}(J)$.

$\left[E_{C}\right] \in M \longleftrightarrow\left[E_{C}\right] \in \tilde{M}$ by stability, then $\varphi^{-1}\left(\left[E_{C}\right]\right)=\{$ smooth cubic threefolds $X \supset C\} \subset \mathbb{P}^{2}$.
For $(\ell, X) \in-F \subset J$, we have $b^{-1}((\ell, X))=\{$ smooth conics residual to ℓ in $X\} \subset \mathbb{P}^{2}$.
\rightsquigarrow flop along the locus of conics.

Some remarks

For a very general cubic fourfold Y :
\widetilde{M} and N are not isomorphic and N is isomorphic to Voisin's construction.
(The Picard rank of \widetilde{M} and N is two \Rightarrow there exists a unique HK compactification of the twisted family with a Lagrangian fibration structure.)

Question: $B \cong \mathbb{P}^{5}$?
We only know $\mathbb{P}_{0} \subset B$ and conjecturally the base of a Lagrangian
fibration is a projective space. True for a very general cubic fourfold

Some remarks

For a very general cubic fourfold Y :
\widetilde{M} and N are not isomorphic and N is isomorphic to Voisin's construction.
(The Picard rank of \widetilde{M} and N is two \Rightarrow there exists a unique HK compactification of the twisted family with a Lagrangian fibration structure.)

Question: $B \cong \mathbb{P}^{5}$?

We only know $\mathbb{P}_{0} \subset B$ and conjecturally the base of a Lagrangian fibration is a projective space. True for a very general cubic fourfold.

Application 2

Let $\mathcal{C} \subset \operatorname{Hilb}^{5 m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)
\mathcal{C} has maximally rationally connected (MRC) quotient birational to
which is the MRC fibration of \mathcal{C}

Application 2

Let $\mathcal{C} \subset \operatorname{Hilb}^{5 m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)
\mathcal{C} has maximally rationally connected (MRC) quotient birational to J J.

The projection pr: $\mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathcal{K} u(Y)$ induces a rational map

Application 2

Let $\mathcal{C} \subset \operatorname{Hilb}^{5 m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)

\mathcal{C} has maximally rationally connected (MRC) quotient birational to J.

Theorem (Li, P., Zhao)

The projection pr: $\mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathcal{K} u(Y)$ induces a rational map

$$
\mathcal{C} \rightarrow \tilde{M}, \quad \Gamma \mapsto \operatorname{pr}\left(\mathcal{I}_{\Gamma / Y}(1)\right)
$$

which is the MRC fibration of \mathcal{C}.

Next

Given a K3 surface S, take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ primitive and $v=m v_{0}$.

Case when H is not v_{0}-generic, they construct a symplectic

 resolution usino dimer varieties
Next

Given a K3 surface S, take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ primitive and $v=m v_{0}$.
Theorem (Kaledin-Lehn-Sorger)
If either $m \geq 2$ and $\left\langle v_{0}, v_{0}\right\rangle>2$ or $m>2$ and $\left\langle v_{0}, v_{0}\right\rangle \geq 2$ and H is v-generic, then $M_{H}(v)$ does not admit a symplectic resolution.

Next

Given a K3 surface S, take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ primitive and $v=m v_{0}$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \geq 2$ and $\left\langle v_{0}, v_{0}\right\rangle>2$ or $m>2$ and $\left\langle v_{0}, v_{0}\right\rangle \geq 2$ and H is v-generic, then $M_{H}(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_{0}-generic, they construct a symplectic resolution using quiver varieties.

Do analogous statements hold for moduli spaces of
semistable objects in Kuznetsov components?

Next

Given a K3 surface S, take $v_{0} \in \tilde{H}_{\text {alg }}(S, \mathbb{Z})$ primitive and $v=m v_{0}$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \geq 2$ and $\left\langle v_{0}, v_{0}\right\rangle>2$ or $m>2$ and $\left\langle v_{0}, v_{0}\right\rangle \geq 2$ and H is v-generic, then $M_{H}(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_{0}-generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Next

Given a K3 surface S, take $v_{0} \in \tilde{H}_{\mathrm{alg}}(S, \mathbb{Z})$ primitive and $v=m v_{0}$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \geq 2$ and $\left\langle v_{0}, v_{0}\right\rangle>2$ or $m>2$ and $\left\langle v_{0}, v_{0}\right\rangle \geq 2$ and H is v-generic, then $M_{H}(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_{0}-generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Let Y be a cubic fourfold and X a Gushel-Mukai fourfold. Then the Formality Conjecture holds for semistable objects in $\mathcal{K} u(Y)$ and $\mathcal{K} u(X)$.

Thanks!

