Elliptic quintics on cubic fourfolds, O'Grady 10 and Lagrangian fibrations

Laura Pertusi

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano

Joint work with Chunyi Li and Xiaolei Zhao (arXiv:2007.14108)

◆□▶ ◆舂▶ ◆産▶ ◆産▶

Examples

dim 2: K3 surfaces.

dim > 2: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

A (B) > A (B) > A (B) >

Examples

dim 2: K3 surfaces.

dim > 2: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

A (B) > A (B) > A (B) >

Examples

dim 2: K3 surfaces.

<u>dim > 2</u>: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

A (2) × A (2) × A (2) ×

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- 2 (Beauville) Kum^{*n*}(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- 2 (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

A (1) > A (2) > A (2) >

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- **2** (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

A (1) > A (2) > A (2) >

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- **2** (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
 - O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

・ロト ・四ト ・ヨト ・ヨト

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- **2** (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

▲御▶ ▲ 国▶ ▲ 国▶

Examples

dim 2: K3 surfaces.

 $\underline{\dim > 2}$: 4 deformation classes are known.

- (Beauville) Hilbⁿ(S) where S is a K3 surface, $n \ge 2$;
- **2** (Beauville) Kumⁿ(A) where A is an abelian surface, $n \ge 2$;
- (O'Grady) 10-dimensional example OG10;
- (O'Grady) 6-dimensional example OG6.

Today: we focus on OG10.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in Y ~_{def} Hilb²(K3).
- (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ~def Hilb⁴(K3).

 $igodoldsymbol{igodoldsymbol{eta}}$ (Laza-Saccà-Voisin) Intermediate Jacobian of $Y=\sim_{\mathsf{def}}\mathsf{OG10}$.

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in Y ~_{def} Hilb²(K3).
- (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ~def Hilb⁴(K3).

 $igodoldsymbol{igodoldsymbol{eta}}$ (Laza-Saccà-Voisin) Intermediate Jacobian of $Y=\sim_{\mathsf{def}}\mathsf{OG10}$.

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in Y ∼_{def} Hilb²(K3).
- (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ~def Hilb⁴(K3).

 $igodoldsymbol{igodoldsymbol{eta}}$ (Laza-Saccà-Voisin) Intermediate Jacobian of $Y=\sim_{\mathsf{def}}\mathsf{OG10}.$

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in Y ∼_{def} Hilb²(K3).
- (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ~def Hilb⁴(K3).

 $igodoldsymbol{igo$

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in $Y \sim_{\text{def}} \text{Hilb}^2(\text{K3})$.
- (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ~def Hilb⁴(K3).
- 🕘 (Laza-Saccà-Voisin) Intermediate Jacobian of Y $\sim_{\sf def}$ OG10.

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in $Y \sim_{def} Hilb^2(K3)$.
- Q (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ∼_{def} Hilb⁴(K3).

) (Laza-Saccà-Voisin) Intermediate Jacobian of $Y = \sim_{\sf def} \sf{OG10}$.

Let S be a K3 surface.

- (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with primitive Mukai vector $v \sim_{def} Hilb^n(S)$.
- (O'Grady, Lehn-Sorger) Symplectic resolutions of moduli spaces of semistable sheaves on S with Mukai vector $v = 2v_0$, $v_0^2 = 2 \sim_{def} OG10$.

Surprising: cubic fourfolds have many associated HK manifolds. A cubic fourfold Y is a smooth cubic hypersurface in \mathbb{P}^5 over \mathbb{C} .

- (Beauville-Donagi) Fano variety F_Y parametrizing lines in $Y \sim_{\text{def}} \text{Hilb}^2(\text{K3})$.
- Q (Lehn-Lehn-Sorger-van Straten) HK eightfold M_Y constructed out of twisted cubic curves, for Y not containing a plane ∼_{def} Hilb⁴(K3).

• (Laza-Saccà-Voisin) Intermediate Jacobian of $Y \sim_{def} OG10$.

By the work of Kuznetsov there is a subcategory of K3 type in $D^{b}(Y) := D^{b}(Coh(Y))$, denoted by $\mathcal{K}u(Y)$.

Our goal

Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in Ku(Y).

Relate them to the geometry of Y:

- Intermediate Jacobian of Y;
- Hilbert scheme of elliptic quintic curves on Y.

A (B) > A (B) > A (B) >

By the work of Kuznetsov there is a subcategory of K3 type in $D^{b}(Y) := D^{b}(Coh(Y))$, denoted by $\mathcal{K}u(Y)$.

Our goal

 Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in Ku(Y).

- **Or all the equivalents of a set of a**
 - Intermediate Jacobian of Y;
 - Hilbert scheme of elliptic quintic curves on Y.

A (1) > A (2) > A

By the work of Kuznetsov there is a subcategory of K3 type in $D^{b}(Y) := D^{b}(Coh(Y))$, denoted by $\mathcal{K}u(Y)$.

Our goal

- Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in Ku(Y).
- 2 Relate them to the geometry of Y:
 - Intermediate Jacobian of Y;
 - e Hilbert scheme of elliptic quintic curves on Y.

イロト イヨト イヨト イヨト

By the work of Kuznetsov there is a subcategory of K3 type in $D^{b}(Y) := D^{b}(Coh(Y))$, denoted by $\mathcal{K}u(Y)$.

Our goal

- Construct examples of projective hyperkähler manifolds of type OG10 as desingularizations of moduli spaces of semistable objects in Ku(Y).
- **2** Relate them to the geometry of Y:
 - Intermediate Jacobian of Y;
 - ${\bf 2}$ Hilbert scheme of elliptic quintic curves on Y.

(D) (A) (A) (A)

Let S be a K3 surface with polarization H.

Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v-generic</u> polarization on $S \sim$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \sim \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H.

Denote by $\widetilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}),\langle \,,\,\rangle)$ the Mukai lattice of S.

Take $v_0 \in H_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$.

 $M_H(v) =$ moduli space of *H*-Gieseker semistable sheaves on *S* with Mukai vector *v*.

Let H be a <u>v-generic</u> polarization on $S \sim$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \sim \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}),\langle,\rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$.

 $M_H(v) = \text{moduli space of } H$ -Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v</u>-generic polarization on $S \sim$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \sim \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v</u>-generic polarization on $S \rightarrow$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \rightarrow \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let *H* be a <u>v-generic</u> polarization on $S \rightarrow$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \rightarrow \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0)).$

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v-generic</u> polarization on $S \rightarrow$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \rightarrow \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v-generic</u> polarization on $S \rightarrow$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \rightarrow \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

Let S be a K3 surface with polarization H. Denote by $\tilde{H}(S,\mathbb{Z}) = (H^*(S,\mathbb{Z}), \langle , \rangle)$ the Mukai lattice of S. Take $v_0 \in \tilde{H}_{alg}(S,\mathbb{Z})$ with $\langle v_0, v_0 \rangle = 2$ and $v = 2v_0$. $M_H(v) =$ moduli space of H-Gieseker semistable sheaves on S with Mukai vector v.

Let H be a <u>v-generic</u> polarization on $S \rightarrow$ strictly semistable sheaves are S-equivalent to $F \oplus F'$ with F, F' stable sheaves with Mukai vector $v_0 \rightarrow \text{Sing}(M_H(v)) \cong \text{Sym}^2(M_H(v_0))$.

Example OG10 (O'Grady)

 $v_0 = v(\mathcal{I}_Z)$, where $\mathcal{I}_Z =$ ideal sheaf of 2 points in S, $\mathcal{I}_Z \oplus \mathcal{I}_{Z'}$ is strictly semistable in $M_H(2v_0)$.

Theorem (O'Grady, Lehn-Sorger)

 $M_H(v)$ has a symplectic resolution \tilde{M} , obtained by blowing up the singular locus with the reduced scheme structure, which is a projective HK 10-fold \sim_{def} OG10.

5 / 20

Proposition (Kuznetsov)

$$\begin{split} \mathrm{D^{b}}(Y) &= \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle \text{ where } \\ \mathcal{K}u(Y) &:= \{ E \in \mathrm{D^{b}}(Y) : \mathrm{Hom}_{\mathrm{D^{b}}(Y)}(\mathcal{O}_{Y}(i), E) = 0, \forall i = 0, 1, 2 \}. \end{split}$$

- $\mathcal{K}u(X)$ is of K3 type, e.g. the Serre functor of $\mathcal{K}u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice H̃(Ku(Y), Z) of Ku(Y) is the free abelian group {κ ∈ K(Y)_{top} : χ([O_Y(i)], κ) = 0, for all i = 0, 1, 2} with intersection form -χ and induced weight-two Hodge structure H̃^{2,0}(Ku(Y)) := H^{3,1}(Y), H̃^{1,1}(Ku(Y)) := ⊕_pH^{p,p}(Y).
 H^{*}_{alg}(Ku(Y)) := H̃^{1,1}(Ku(Y)) ∩ H̃(Ku(Y), Z), then (λ₁, λ₂) ≅ A₂ := (2 -1) (-1 -2) ⊂ H^{*}_{alg}(Ku(Y)) and there is a Hodge isometry (λ₁, λ₂)[⊥] ≅ H⁴(Y, Z)_{prim}.

Proposition (Kuznetsov)

$$\begin{split} \mathrm{D^{b}}(Y) &= \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle \text{ where } \\ \mathcal{K}u(Y) &:= \{ E \in \mathrm{D^{b}}(Y) : \mathrm{Hom}_{\mathrm{D^{b}}(Y)}(\mathcal{O}_{Y}(i), E) = 0, \forall i = 0, 1, 2 \}. \end{split}$$

- $\mathcal{K}u(X)$ is of K3 type, e.g. the Serre functor of $\mathcal{K}u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice H̃(Ku(Y), Z) of Ku(Y) is the free abelian group {κ ∈ K(Y)_{top} : χ([O_Y(i)], κ) = 0, for all i = 0, 1, 2} with intersection form -χ and induced weight-two Hodge structure H̃^{2,0}(Ku(Y)) := H^{3,1}(Y), H̃^{1,1}(Ku(Y)) := ⊕_pH^{p,p}(Y).
 H^{*}_{alg}(Ku(Y)) := H̃^{1,1}(Ku(Y)) ∩ H̃(Ku(Y), Z), then (λ₁, λ₂) ≅ A₂ := (2 -1) (-1 -2) ⊂ H^{*}_{alg}(Ku(Y)) and there is a Hodge isometry (λ₁, λ₂)[⊥] ≅ H⁴(Y, Z)_{prim}.

Proposition (Kuznetsov)

$$\begin{split} \mathrm{D^{b}}(Y) &= \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle \text{ where } \\ \mathcal{K}u(Y) &:= \{ E \in \mathrm{D^{b}}(Y) : \mathrm{Hom}_{\mathrm{D^{b}}(Y)}(\mathcal{O}_{Y}(i), E) = 0, \forall i = 0, 1, 2 \}. \end{split}$$

- $\mathcal{K}u(X)$ is of K3 type, e.g. the Serre functor of $\mathcal{K}u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice H̃(Ku(Y), Z) of Ku(Y) is the free abelian group {κ ∈ K(Y)_{top} : χ([O_Y(i)], κ) = 0, for all i = 0, 1, 2} with intersection form -χ and induced weight-two Hodge structure H̃^{2,0}(Ku(Y)) := H^{3,1}(Y), H̃^{1,1}(Ku(Y)) := ⊕_pH^{p,p}(Y).
 H^{*}_{alg}(Ku(Y)) := H̃^{1,1}(Ku(Y)) ∩ H̃(Ku(Y), Z), then (λ₁, λ₂) ≅ A₂ := (2 -1) (-1 -2) ⊂ H^{*}_{alg}(Ku(Y)) and there is a Hodge isometry (λ₁, λ₂)[⊥] ≅ H⁴(Y, Z)_{prim}.

Proposition (Kuznetsov)

$$\begin{split} \mathrm{D^{b}}(Y) &= \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle \text{ where } \\ \mathcal{K}u(Y) &:= \{ E \in \mathrm{D^{b}}(Y) : \mathrm{Hom}_{\mathrm{D^{b}}(Y)}(\mathcal{O}_{Y}(i), E) = 0, \forall i = 0, 1, 2 \}. \end{split}$$

Properties

- $\mathcal{K}u(X)$ is of K3 type, e.g. the Serre functor of $\mathcal{K}u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice $\tilde{H}(\mathcal{K}u(Y), \mathbb{Z})$ of $\mathcal{K}u(Y)$ is the free abelian group $\{\kappa \in \mathcal{K}(Y)_{top} : \chi([\mathcal{O}_Y(i)], \kappa) = 0, \text{ for all } i = 0, 1, 2\}$ with intersection form $-\chi$ and induced weight-two Hodge structure $\tilde{H}^{2,0}(\mathcal{K}u(Y)) := H^{3,1}(Y), \quad \tilde{H}^{1,1}(\mathcal{K}u(Y)) := \bigoplus_p H^{p,p}(Y).$
- $H^*_{alg}(\mathcal{K}u(Y)) := \tilde{H}^{1,1}(\mathcal{K}u(Y)) \cap \tilde{H}(\mathcal{K}u(Y),\mathbb{Z})$, then

$\langle \lambda_1, \lambda_2 \rangle \cong A_2 := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \subset H^*_{alg}(\mathcal{K}u(Y)) \text{ and there is a}$ Hodge isometry $\langle \lambda_1, \lambda_2 \rangle^{\perp} \cong H^4(Y, \mathbb{Z})$

Proposition (Kuznetsov)

$$\begin{split} \mathrm{D^{b}}(Y) &= \langle \mathcal{K}u(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle \text{ where } \\ \mathcal{K}u(Y) &:= \{ E \in \mathrm{D^{b}}(Y) : \mathrm{Hom}_{\mathrm{D^{b}}(Y)}(\mathcal{O}_{Y}(i), E) = 0, \forall i = 0, 1, 2 \}. \end{split}$$

- $\mathcal{K}u(X)$ is of K3 type, e.g. the Serre functor of $\mathcal{K}u(Y)$ is [2].
- (Addington-Thomas) The Mukai lattice H̃(Ku(Y), Z) of Ku(Y) is the free abelian group {κ ∈ K(Y)_{top} : χ([O_Y(i)], κ) = 0, for all i = 0, 1, 2} with intersection form -χ and induced weight-two Hodge structure H̃^{2,0}(Ku(Y)) := H^{3,1}(Y), H̃^{1,1}(Ku(Y)) := ⊕_pH^{p,p}(Y).
 H^{*}_{alg}(Ku(Y)) := H̃^{1,1}(Ku(Y)) ∩ H̃(Ku(Y), Z), then (λ₁, λ₂) ≅ A₂ := (2 -1) (-1 2) ⊂ H^{*}_{alg}(Ku(Y)) and there is a Hodge isometry (λ₁, λ₂)[⊥] ≅ H⁴(Y, Z)_{prim}.

Stability conditions on $\mathcal{K}u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)

 Stab(Ku(Y)) ≠ Ø. They describe a connected component Stab[†](Ku(Y)) of Stab(Ku(Y)).

Given v ∈ H^{*}_{alg}(Ku(Y)) primitive with v² ≥ -2 and σ ∈ Stab[†](Ku(Y)) v-generic, then the moduli space M_σ(v) of σ-semistable objects in Ku(Y) with Mukai vector v is a smooth projective HK manifold of dimension 2n := v² + 2 ~_{def} Hilbⁿ(K3).

Theorem (Li, P., Zhao)

 $F_Y \cong M_{\sigma}(\lambda_1 + \lambda_2).$ If Y does not contain a plane, $M_Y \cong M_{\sigma}(2\lambda_1 + \lambda_2).$

(日)

Stability conditions on $\mathcal{K}u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)

- Stab(Ku(Y)) ≠ Ø. They describe a connected component Stab[†](Ku(Y)) of Stab(Ku(Y)).
- Given v ∈ H^{*}_{alg}(Ku(Y)) primitive with v² ≥ -2 and σ ∈ Stab[†](Ku(Y)) v-generic, then the moduli space M_σ(v) of σ-semistable objects in Ku(Y) with Mukai vector v is a smooth projective HK manifold of dimension 2n := v² + 2 ~_{def} Hilbⁿ(K3).

Theorem (Li, P., Zhao)

 $F_Y \cong M_{\sigma}(\lambda_1 + \lambda_2).$ If Y does not contain a plane, $M_Y \cong M_{\sigma}(2\lambda_1 + \lambda_2).$

Stability conditions on $\mathcal{K}u(Y)$

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)

- Stab(Ku(Y)) ≠ Ø. They describe a connected component Stab[†](Ku(Y)) of Stab(Ku(Y)).
- Given v ∈ H^{*}_{alg}(Ku(Y)) primitive with v² ≥ -2 and σ ∈ Stab[†](Ku(Y)) v-generic, then the moduli space M_σ(v) of σ-semistable objects in Ku(Y) with Mukai vector v is a smooth projective HK manifold of dimension 2n := v² + 2 ~_{def} Hilbⁿ(K3).

Theorem (Li, P., Zhao) $F_Y \cong M_{\sigma}(\lambda_1 + \lambda_2).$ If Y does not contain a plane, $M_Y \cong M_{\sigma}(2\lambda_1 + \lambda_2).$

(ロ) (同) (E) (E) (E)

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$.

[Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^{2}(M_{\sigma}(v_{0}))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

- Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of \mathcal{M} is $\cong \operatorname{Sym}^2(\mathcal{M}_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

- Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^2(M_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold $\sim_{def} {\rm OG10}.$

Idea of proof:

- Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^2(M_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

- Symplectic resolution: describe the local structure of *M* at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^2(M_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

- Symplectic resolution: describe the local structure of M at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^2(M_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

$$\Delta \cong M_{\sigma}(v_0) \subset M^{\operatorname{sing}} \cong \operatorname{Sym}^2(M_{\sigma}(v_0)) \subset M$$

Symplectic resolution: describe the local structure of *M* at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].

Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

Take $v_0 \in H^*_{alg}(\mathcal{K}u(Y))$ primitive with $v_0^2 = 2$ and $v = 2v_0$. [Alper-Halpern-Leistner-Heinloth] The moduli stack $\mathcal{M}_{\sigma}(v)$ has a good moduli space $M := M_{\sigma}(v)$ which is a proper algebraic space. Let $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$ be v-generic \Rightarrow strictly semistable locus of M is $\cong \operatorname{Sym}^2(M_{\sigma}(v_0))$.

Theorem (Li, P., Zhao)

M has a symplectic resolution \tilde{M} which is a 10-dimensional smooth projective HK manifold \sim_{def} OG10.

Idea of proof:

$$\Delta \cong M_{\sigma}(v_0) \subset M^{\mathsf{sing}} \cong \mathsf{Sym}^2(M_{\sigma}(v_0)) \subset M$$

- Symplectic resolution: describe the local structure of *M* at the worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].
- Projectivity, deformation type: degeneration to the locus of cubic fourfolds with Kuznetsov component equivalent to D^b(K3).

$$v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \qquad \rightsquigarrow \quad \sigma \colon \tilde{M} \to M := M_\sigma(v).$$

Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{inst,X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve $\Gamma \subset X$ (l.c.i. quintic curve with trivial canonical bundle, $h^0(\mathcal{O}_{\Gamma}) = 1$ and $\langle \Gamma \rangle \cong \mathbb{P}^4$). $\rightsquigarrow 0 \rightarrow \mathcal{O}_X(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma/X}(1) \rightarrow 0$ F_{Γ} is a rank 2 stable vector bundle.
- Given a smooth conic C ⊂ X, let θ_C be the theta characteristic of C.
 - $\stackrel{\sim}{\to} 0 \to F_C \to \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \to \theta_C(1) \to 0$ F_C is a rank 2 torsion free stable sheaf.
- $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma \colon \tilde{M} \to M := M_{\sigma}(v).$ Goal: understand the objects in M.

Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{inst,X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2,0, -2,0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve $\Gamma \subset X$ (l.c.i. quintic curve with trivial canonical bundle, $h^0(\mathcal{O}_{\Gamma}) = 1$ and $\langle \Gamma \rangle \cong \mathbb{P}^4$). $\rightsquigarrow 0 \rightarrow \mathcal{O}_X(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma/X}(1) \rightarrow 0$ F_{Γ} is a rank 2 stable vector bundle.
- Given a smooth conic C ⊂ X, let θ_C be the theta characteristic of C.
 - $\stackrel{\sim}{\to} 0 \to F_C \to \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \to \theta_C(1) \to 0$ F_C is a rank 2 torsion free stable sheaf.
- $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

 $\rightsquigarrow \quad \sigma \colon \tilde{M} \to M := M_{\sigma}(v).$ $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>.

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma \colon \overline{M} \to M := M_{\sigma}(v).$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{\text{inst},X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve $\Gamma \subset X$ (l.c.i. quintic curve with trivial canonical bundle, $h^0(\mathcal{O}_{\Gamma}) = 1$ and $\langle \Gamma \rangle \cong \mathbb{P}^4$). $\rightsquigarrow 0 \rightarrow \mathcal{O}_X(-1) \rightarrow F_{\Gamma} \rightarrow \mathcal{I}_{\Gamma/X}(1) \rightarrow 0$ F_{Γ} is a rank 2 stable vector bundle.
- Given a smooth conic C ⊂ X, let θ_C be the theta characteristic of C.
 - $\stackrel{\rightsquigarrow}{\to} 0 \to F_C \to \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \to \theta_C(1) \to 0$ F_C is a rank 2 torsion free stable sheaf.
- $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma \colon \overline{M} \to M \coloneqq M_{\sigma}(v).$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{\text{inst},X} = \text{moduli space of rank 2 instanton sheaves on } X$, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve Γ ⊂ X (l.c.i. quintic curve with trivial canonical bundle, h⁰(O_Γ) = 1 and (Γ) ≅ ℙ⁴).
 → 0 → O_X(-1) → F_Γ → I_{Γ/X}(1) → 0
 F_Γ is a rank 2 stable vector bundle.
- ② Given a smooth conic C ⊂ X, let θ_C be the theta characteristic of C.

 $\stackrel{\sim}{\to} 0 \to F_C \to \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \to \theta_C(1) \to 0$ F_C is a rank 2 torsion free stable sheaf.

 $\ \, {\mathfrak I}_{\ell_1/X} \oplus {\mathcal I}_{\ell_2/X} \text{ for two lines } \ell_1, \ell_2 \subset X \text{ is a semistable sheaf.}$

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma : \overline{M} \to M := M_{\sigma}(v).$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{\text{inst},X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve Γ ⊂ X (l.c.i. quintic curve with trivial canonical bundle, h⁰(O_Γ) = 1 and ⟨Γ⟩ ≅ ℙ⁴).
 → 0 → O_X(-1) → F_Γ → I_{Γ/X}(1) → 0
 F_Γ is a rank 2 stable vector bundle.
- 3 Given a smooth conic $C \subset X$, let θ_C be the theta characteristic of C. $\rightsquigarrow 0 \rightarrow F_C \rightarrow \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \rightarrow \theta_C(1) \rightarrow 0$ F_C is a rank 2 torsion free stable sheaf.
- ③ $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma \colon \tilde{M} \to M := M_{\sigma}(v).$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{\text{inst},X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve Γ ⊂ X (l.c.i. quintic curve with trivial canonical bundle, h⁰(O_Γ) = 1 and ⟨Γ⟩ ≅ ℙ⁴).
 → 0 → O_X(-1) → F_Γ → I_{Γ/X}(1) → 0
 F_Γ is a rank 2 stable vector bundle.
- ② Given a smooth conic C ⊂ X, let θ_C be the theta characteristic of C.

3 $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

 $v_0 = \lambda_1 + \lambda_2, v = 2\lambda_1 + 2\lambda_2 \quad \rightsquigarrow \quad \sigma \colon \tilde{M} \to M := M_{\sigma}(v).$ Goal: understand the objects in M. Why? [Druel, Beauville] Let X be a smooth <u>cubic threefold</u>. $M_{\text{inst},X} =$ moduli space of rank 2 instanton sheaves on X, i.e. semistable sheaves with Chern character (2, 0, -2, 0).

Objects in $M_{inst,X}$ are in one of the following classes:

- Given an elliptic quintic curve Γ ⊂ X (l.c.i. quintic curve with trivial canonical bundle, h⁰(O_Γ) = 1 and ⟨Γ⟩ ≅ ℙ⁴).
 → 0 → O_X(-1) → F_Γ → I_{Γ/X}(1) → 0
 F_Γ is a rank 2 stable vector bundle.
- **2** Given a smooth conic $C \subset X$, let θ_C be the theta characteristic of C.

 $\stackrel{\sim}{\longrightarrow} 0 \to F_C \to \mathcal{O}_X \otimes H^0(X, \theta_C(1)) \to \theta_C(1) \to 0$ F_C is a rank 2 torsion free stable sheaf.

3 $\mathcal{I}_{\ell_1/X} \oplus \mathcal{I}_{\ell_2/X}$ for two lines $\ell_1, \ell_2 \subset X$ is a semistable sheaf.

Moduli space of instanton sheaves

 $J^2(X) = 1$ -cycles of degree 2 on X. $M_{\text{inst},X} \xrightarrow{c_2} J^2(X), F \mapsto c_2(F).$

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space $M_{inst,X}$ is smooth and connected. The morphism \mathfrak{c}_2 contracts the locus { F_C , C smooth conic} to $F^2 \cong F_X$, where F_X is the Fano surface of lines in X. The morphism \mathfrak{c}_2 is isomorphic to the blow up $Bl_{F^2}(J^2(X))$ of $J^2(X)$ along F^2 .

Back to the cubic fourfold Y:

Remark

For a smooth hyperplane section $i: X \hookrightarrow Y$ and $F \in M_{\text{inst},X}$ we have

$$\operatorname{ch}(i_*F)=2\lambda_1+2\lambda_2.$$

・ロト ・回ト ・ヨト ・ヨト

Moduli space of instanton sheaves

$$J^2(X) = 1$$
-cycles of degree 2 on X.
 $M_{\text{inst},X} \xrightarrow{c_2} J^2(X), F \mapsto c_2(F).$

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space $M_{inst,X}$ is smooth and connected. The morphism c_2 contracts the locus { F_C , C smooth conic} to $F^2 \cong F_X$, where F_X is the Fano surface of lines in X. The morphism c_2 is isomorphic to the blow up $Bl_{F^2}(J^2(X))$ of $J^2(X)$ along F^2 .

Back to the cubic fourfold Y:

Remark

For a smooth hyperplane section $i: X \hookrightarrow Y$ and $F \in M_{inst,X}$ we have

$$\operatorname{ch}(i_*F)=2\lambda_1+2\lambda_2.$$

Moduli space of instanton sheaves

$$J^2(X) = 1$$
-cycles of degree 2 on X.
 $M_{\text{inst},X} \xrightarrow{c_2} J^2(X), F \mapsto c_2(F).$

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space $M_{inst,X}$ is smooth and connected. The morphism c_2 contracts the locus { F_C , C smooth conic} to $F^2 \cong F_X$, where F_X is the Fano surface of lines in X. The morphism c_2 is isomorphic to the blow up $Bl_{F^2}(J^2(X))$ of $J^2(X)$ along F^2 .

Back to the cubic fourfold Y:

Remark

For a smooth hyperplane section $i: X \hookrightarrow Y$ and $F \in M_{inst,X}$ we have

$$\operatorname{ch}(i_*F)=2\lambda_1+2\lambda_2.$$

(D) (A) (A) (A) (A)

э

$$\mathrm{D^{b}}(Y) = \langle \mathcal{O}_{Y}(-2), \qquad \mathcal{O}_{Y}(-1), \qquad \mathcal{K}u(Y), \qquad \mathcal{O}_{Y} \rangle$$

Definition (Projection functor) pr: $D^{b}(Y) \rightarrow \mathcal{K}u(Y)$, pr = $R_{\mathcal{O}_{Y}(-1)}R_{\mathcal{O}_{Y}(-2)}L_{\mathcal{O}_{Y}}$

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

 $E_{\Gamma} := \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$

where $\mathcal{I}_{\Gamma/Y}$ is the ideal sheaf of Γ in Y. Given a smooth conic $C \subset Y$, we define

$$E_C := \operatorname{pr}(F_C).$$

$$\mathrm{D^{b}}(Y) = \langle \mathcal{O}_{Y}(\underline{-2}), \qquad \mathcal{O}_{Y}(-1), \qquad \mathcal{K}u(Y), \qquad \mathcal{O}_{Y} \rangle$$

Definition (Projection functor) pr: $D^{b}(Y) \rightarrow \mathcal{K}u(Y)$, pr = $R_{\mathcal{O}_{Y}(-1)}R_{\mathcal{O}_{Y}(-2)}L_{\mathcal{O}_{Y}}$.

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

 $E_{\Gamma} := \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$

where $\mathcal{I}_{\Gamma/Y}$ is the ideal sheaf of Γ in Y. Given a smooth conic $C \subset Y$, we define

$$E_C := \operatorname{pr}(F_C).$$

$$\mathrm{D^{b}}(Y) = \langle \mathcal{O}_{Y}(\underline{-2}), \qquad \mathcal{O}_{Y}(-1), \qquad \mathcal{K}u(Y), \qquad \mathcal{O}_{Y} \rangle$$

Definition (Projection functor) pr: $D^{b}(Y) \rightarrow \mathcal{K}u(Y)$, pr = $R_{\mathcal{O}_{Y}(-1)}R_{\mathcal{O}_{Y}(-2)}L_{\mathcal{O}_{Y}}$.

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

 $E_{\Gamma} := \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$

where $\mathcal{I}_{\Gamma/Y}$ is the ideal sheaf of Γ in Y. Given a smooth conic $C \subset Y$, we define

 $E_C := \operatorname{pr}(F_C).$

・ロト ・日ト ・ヨト ・ヨト

э

$$\mathrm{D^{b}}(Y) = \langle \mathcal{O}_{Y}(\underline{-2}), \qquad \mathcal{O}_{Y}(-1), \qquad \mathcal{K}u(Y), \qquad \mathcal{O}_{Y} \rangle$$

 $\begin{array}{l} \textbf{Definition (Projection functor)} \\ \mathsf{pr} \colon \mathrm{D^b}(Y) \to \mathcal{K}u(Y), \ \mathsf{pr} = \mathsf{R}_{\mathcal{O}_Y(-1)}\mathsf{R}_{\mathcal{O}_Y(-2)}\mathsf{L}_{\mathcal{O}_Y}. \end{array}$

Definition

Given an elliptic quintic curve $\Gamma \subset Y$, we define

 $E_{\Gamma} := \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$

where $\mathcal{I}_{\Gamma/Y}$ is the ideal sheaf of Γ in Y. Given a smooth conic $C \subset Y$, we define

$$E_C := \operatorname{pr}(F_C).$$

A (1) A (2) A (3) A

Э

Moduli space $M := M_{\sigma}(2\lambda_1 + 2\lambda_2)$

Theorem (Li, P., Zhao)

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- 2) For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space *M*.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ v-generic. [Li,P.,Zhao] $P_{\ell} := \operatorname{pr}(\mathcal{I}_{\ell/X})$ is σ -stable, $v(P_{\ell}) = \lambda_1 + \lambda_2$. So

$$M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$$

We apply this result to study the relation of *M* with the (twisted) Intermediate Jacobian of *Y*.

・ロト ・日ト ・ヨト ・ヨト

Moduli space $M := M_{\sigma}(2\lambda_1 + 2\lambda_2)$

Theorem (Li, P., Zhao)

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- **2** For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space *M*.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ v-generic. [Li,P.,Zhao] $P_{\ell} := \operatorname{pr}(\mathcal{I}_{\ell/X})$ is σ -stable, $v(P_{\ell}) = \lambda_1 + \lambda_2$. So

$$M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$$

We apply this result to study the relation of *M* with the (twisted) Intermediate Jacobian of *Y*.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- **2** For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ v-generic. [Li,P.,Zhao] $P_{\ell} := \operatorname{pr}(\mathcal{I}_{\ell/X})$ is σ -stable, $v(P_{\ell}) = \lambda_1 + \lambda_2$. So

$$M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$$

We apply this result to study the relation of *M* with the (twisted) Intermediate Jacobian of *Y*.

イロト イヨト イヨト イヨト 三日

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- **2** For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ *v*-generic. [Li P. Zhao] $P_{\mathcal{C}} := \operatorname{pr}(\mathcal{I}_{\mathcal{C}}v)$ is σ -stable. $v(P_{\mathcal{C}}) = \lambda_1 + \lambda_2$. So

 $M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$

We apply this result to study the relation of *M* with the (twisted) Intermediate Jacobian of *Y*.

(日) (四) (三) (三) (三) (三)

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- **2** For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ v-generic. [Li,P.,Zhao] $P_{\ell} := \operatorname{pr}(\mathcal{I}_{\ell/X})$ is σ -stable, $v(P_{\ell}) = \lambda_1 + \lambda_2$. So

$$M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$$

We apply this result to study the relation of *M* with the (twisted) Intermediate Jacobian of *Y*.

- We have $E_{\Gamma} \cong i_*F_{\Gamma}$, where $i: X \hookrightarrow Y$ is a smooth hyperplane section.
- **2** For $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$, the objects E_{Γ} , E_{C} are σ -stable.

Consequence: description of an open subvariety in the stable locus of the moduli space M.

Strictly semistable locus: Take $\sigma \in \text{Stab}^{\dagger}(\mathcal{K}u(Y))$ v-generic. [Li,P.,Zhao] $P_{\ell} := \operatorname{pr}(\mathcal{I}_{\ell/X})$ is σ -stable, $v(P_{\ell}) = \lambda_1 + \lambda_2$. So

$$M^{\operatorname{sing}} \cong \operatorname{Sym}^2(F_Y).$$

We apply this result to study the relation of M with the (twisted) Intermediate Jacobian of Y.

(日) (四) (三) (三) (三) (三)

[Bayer-Lahoz-Macri-Stellari]

 \mathcal{B}_0 = even part of the sheaf of Clifford algebras associated to the conic fibration.

 $\begin{aligned} \mathrm{D}^{\mathrm{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) &=: \mathrm{D}^{\mathrm{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)),\mathcal{B}_{1},\mathcal{B}_{2},\mathcal{B}_{3} \rangle. \\ \sigma_{\alpha,-1} \text{ tilt-stability condition on } \mathrm{D}^{\mathrm{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) \rightsquigarrow \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}u(Y)} \text{ for } \\ \alpha < \frac{1}{4}. \end{aligned}$

[Bayer-Lahoz-Macri-Stellari]

 $\mathcal{B}_0=$ even part of the sheaf of Clifford algebras associated to the conic fibration.

 $\begin{array}{l} \mathrm{D^{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) =: \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)),\mathcal{B}_{1},\mathcal{B}_{2},\mathcal{B}_{3} \rangle.\\ \sigma_{\alpha,-1} \text{ tilt-stability condition on } \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) \rightsquigarrow \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}^{u}(Y)} \text{ for }\\ \alpha < \frac{1}{4}. \end{array}$

[Bayer-Lahoz-Macri-Stellari]

 $\mathcal{B}_0=$ even part of the sheaf of Clifford algebras associated to the conic fibration.

 $\mathrm{D^{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) =: \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3} \rangle.$

 $\sigma_{\alpha,-1}$ tilt-stability condition on $D^{0}(\mathbb{P}^{s}, \mathcal{B}_{0}) \rightsquigarrow \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}^{u}(Y)}$ for $\alpha < \frac{1}{4}$.

[Bayer-Lahoz-Macri-Stellari]

 $\mathcal{B}_0=$ even part of the sheaf of Clifford algebras associated to the conic fibration.

 $\begin{aligned} \mathrm{D^{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) &=: \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)),\mathcal{B}_{1},\mathcal{B}_{2},\mathcal{B}_{3} \rangle. \\ \sigma_{\alpha,-1} \text{ tilt-stability condition on } \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) \sim \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}u(Y)} \text{ for } \alpha < \frac{1}{4}. \end{aligned}$

[Bayer-Lahoz-Macri-Stellari]

 \mathcal{B}_0 = even part of the sheaf of Clifford algebras associated to the conic fibration.

 $\begin{aligned} \mathrm{D^{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) &=: \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)),\mathcal{B}_{1},\mathcal{B}_{2},\mathcal{B}_{3} \rangle. \\ \sigma_{\alpha,-1} \text{ tilt-stability condition on } \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) \rightsquigarrow \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}u(Y)} \text{ for } \\ \alpha < \frac{1}{4}. \end{aligned}$

[Bayer-Lahoz-Macri-Stellari]

 $\mathcal{B}_0=$ even part of the sheaf of Clifford algebras associated to the conic fibration.

$$\begin{split} \mathrm{D^{b}}(\mathrm{Coh}(\mathbb{P}^{3},\mathcal{B}_{0})) &=: \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) = \langle \Psi(\mathcal{K}u(Y)), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3} \rangle.\\ \sigma_{\alpha,-1} \text{ tilt-stability condition on } \mathrm{D^{b}}(\mathbb{P}^{3},\mathcal{B}_{0}) \rightsquigarrow \sigma := \sigma_{\alpha,-1}^{0}|_{\mathcal{K}u(Y)} \text{ for } \\ \alpha < \frac{1}{4}. \end{split}$$

Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y $\mathcal{X} \to \mathbb{P}_0 \subset (\mathbb{P}^5)^{\vee}, \ \mathcal{X}_t \mapsto t \in \mathbb{P}_0$

 \rightsquigarrow family of twisted intermediate Jacobians $p \colon J \to \mathbb{P}_0, \ J^1(\mathcal{X}_t) \mapsto t.$

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a HK compactification of J, i.e. of a HK \bar{J} and a Lagrangian fibration

Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family. Recently, extended by Saccà to every cubic fourfold.

Consider the family of smooth hyperplane sections of Y $\mathcal{X} \to \mathbb{P}_0 \subset (\mathbb{P}^5)^{\vee}, \ \mathcal{X}_t \mapsto t \in \mathbb{P}_0$ \rightsquigarrow family of twisted intermediate Jacobians $p: J \to \mathbb{P}_0, \ J^1(\mathcal{X}_t) \mapsto t.$

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a HK compactification of J, i.e. of a HK \overline{J} and a Lagrangian fibration

 $(\mathbb{P}^5)^{\vee} \longleftarrow \mathbb{P}_0$ Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family. Recently, extended by Saccà to every cubic fourfold.

Consider the family of smooth hyperplane sections of Y $\mathcal{X} \to \mathbb{P}_0 \subset (\mathbb{P}^5)^{\vee}, \ \mathcal{X}_t \mapsto t \in \mathbb{P}_0$ \rightsquigarrow family of twisted intermediate Jacobians $p: J \to \mathbb{P}_0, \ J^1(\mathcal{X}_t) \mapsto t.$

[Donagi-Markman] J has a symplectic form.

Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family. Recently, extended by Saccà to every cubic fourfold.

Consider the family of smooth hyperplane sections of Y $\mathcal{X} \to \mathbb{P}_0 \subset (\mathbb{P}^5)^{\vee}, \ \mathcal{X}_t \mapsto t \in \mathbb{P}_0$ \rightsquigarrow family of twisted intermediate Jacobians $p \colon J \to \mathbb{P}_0, \ J^1(\mathcal{X}_t) \mapsto t.$

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a HK compactification of J, i.e. of a HK \bar{J} and a Lagrangian fibration

Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family. Recently, extended by Saccà to every cubic fourfold.

Consider the family of smooth hyperplane sections of Y $\mathcal{X} \to \mathbb{P}_0 \subset (\mathbb{P}^5)^{\vee}, \ \mathcal{X}_t \mapsto t \in \mathbb{P}_0$ \rightsquigarrow family of twisted intermediate Jacobians $p \colon J \to \mathbb{P}_0, \ J^1(\mathcal{X}_t) \mapsto t.$

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a HK compactification of J, i.e. of a HK \bar{J} and a Lagrangian fibration

 $\begin{array}{ccc} \pi \colon \bar{J} \to (\mathbb{P}^5)^{\vee} \text{ making the diagram} & \bar{J} \longleftarrow J & \text{to commute.} \\ & & \downarrow & \downarrow p \\ & & (\mathbb{P}^5)^{\vee} \longleftarrow \mathbb{P}_0 \end{array}$

Proved for very general Y by Laza-Saccà-Voisin for the untwisted family and by Voisin for the twisted family. Recently, extended by Saccà to every cubic fourfold.

Recall $\sigma : \tilde{M} \to M$. Set $M_0 := \{[E_{\Gamma}] \in M, \Gamma \subset X \subset Y \text{ elliptic quintic in smooth } X\} \subset \tilde{M}.$ We have the rational map defined by the support: $\tilde{M} \dashrightarrow (\mathbb{P}^5)^{\vee}$ defined on $M_0 \to \mathbb{P}_0$ by $E_{\Gamma} \mapsto \text{supp}E_{\Gamma}.$

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \to \mathbb{P}_0$, i.e.

$$\begin{array}{c} \tilde{M} \leftarrow - \rightarrow N \longleftarrow J \\ \pi \downarrow \qquad \qquad \downarrow^{p} \\ B \longleftarrow \mathbb{P}_{0} \end{array}$$

Idea of proof: Combination of results in birational geometry of HK manifolds [Matsushita].

• 3 > 4

Recall $\sigma \colon \tilde{M} \to M$. Set $M_0 := \{[E_{\Gamma}] \in M, \Gamma \subset X \subset Y \text{ elliptic quintic in smooth } X\} \subset \tilde{M}.$ We have the rational map defined by the support: $\tilde{M} \dashrightarrow (\mathbb{P}^5)^{\vee}$ defined on $M_0 \to \mathbb{P}_0$ by $E_{\Gamma} \mapsto \text{supp}E_{\Gamma}.$

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \to \mathbb{P}_0$, i.e.

$$\begin{array}{c} \tilde{M} \leftarrow - \rightarrow N \longleftarrow J \\ \pi \downarrow \qquad \qquad \downarrow^{p} \\ B \longleftarrow \mathbb{P}_{0} \end{array}$$

Idea of proof: Combination of results in birational geometry of HK manifolds [Matsushita].

Recall $\sigma \colon \tilde{M} \to M$. Set $M_0 := \{[E_{\Gamma}] \in M, \Gamma \subset X \subset Y \text{ elliptic quintic in smooth } X\} \subset \tilde{M}.$ We have the rational map defined by the support: $\tilde{M} \dashrightarrow (\mathbb{P}^5)^{\vee}$ defined on $M_0 \to \mathbb{P}_0$ by $E_{\Gamma} \mapsto \text{supp}E_{\Gamma}.$

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \to \mathbb{P}_0$, i.e.

$$\tilde{M} \leftarrow - \rightarrow N \longleftarrow J$$

$$\pi \downarrow \qquad \qquad \downarrow^{p}$$

$$B \longleftarrow \mathbb{P}_{0}$$

Idea of proof: Combination of results in birational geometry of HK manifolds [Matsushita].

く 聞 と く き と く き と

Recall $\sigma \colon \tilde{M} \to M$. Set $M_0 := \{[E_{\Gamma}] \in M, \Gamma \subset X \subset Y \text{ elliptic quintic in smooth } X\} \subset \tilde{M}.$ We have the rational map defined by the support: $\tilde{M} \dashrightarrow (\mathbb{P}^5)^{\vee}$ defined on $M_0 \to \mathbb{P}_0$ by $E_{\Gamma} \mapsto \text{supp}E_{\Gamma}.$

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to \tilde{M} with a Lagrangian fibration compactifying $p: J \to \mathbb{P}_0$, i.e.

$$\tilde{M} \leftarrow - \rightarrow N \longleftarrow J$$

$$\pi \downarrow \qquad \qquad \downarrow \rho$$

$$B \longleftarrow \mathbb{P}_{0}$$

Idea of proof: Combination of results in birational geometry of HK manifolds [Matsushita].

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves.

 $\mathsf{Bl}_{-F}(J) \xrightarrow{b} J \to \mathbb{P}_0$: blowup of *J* along the involution of the relative Fano surface of lines. We have $M_{\text{inst } \mathbb{P}_0} \cong \mathsf{Bl}_{-F}(J)$.

 $[E_C] \in M \longleftrightarrow [E_C] \in \tilde{M}$ by stability, then $\varphi^{-1}([E_C]) = \{ \text{smooth cubic threefolds } X \supset C \} \subset \mathbb{P}^2.$ For $(\ell, X) \in -F \subset J$, we have $b^{-1}((\ell, X)) = \{ \text{smooth conics residual to } \ell \text{ in } X \} \subset \mathbb{P}^2.$ \rightsquigarrow flop along the locus of conics.

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. $\text{Bl}_{-F}(J) \xrightarrow{b} J \to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines.

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

 $[E_C] \in M \longleftrightarrow [E_C] \in \tilde{M}$ by stability, then $\varphi^{-1}([E_C]) = \{\text{smooth cubic threefolds } X \supset C\} \subset \mathbb{P}^2.$ For $(\ell, X) \in -F \subset J$, we have $b^{-1}((\ell, X)) = \{\text{smooth conics residual to } \ell \text{ in } X\} \subset \mathbb{P}^2.$ \rightsquigarrow flop along the locus of conics.

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. Bl_{-F}(J) $\xrightarrow{b} J \to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines. We have $M_{i} \to \mathbb{P}_0 \cong \mathbb{P}_1 = \mathcal{O}(I)$

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

 $[E_C] \in M \longleftrightarrow [E_C] \in \tilde{M}$ by stability, then $\varphi^{-1}([E_C]) = \{\text{smooth cubic threefolds } X \supset C\} \subset \mathbb{P}^2.$ For $(\ell, X) \in -F \subset J$, we have $b^{-1}((\ell, X)) = \{\text{smooth conics residual to } \ell \text{ in } X\} \subset \mathbb{P}^2.$ \rightsquigarrow flop along the locus of conics.

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. Bl_{-F}(J) \xrightarrow{b} J $\to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines.

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

 $[E_C] \in M \longleftrightarrow [E_C] \in \tilde{M}$ by stability, then $\varphi^{-1}([E_C]) = \{\text{smooth cubic threefolds } X \supset C\} \subset \mathbb{P}^2.$ For $(\ell, X) \in -F \subset J$, we have $b^{-1}((\ell, X)) = \{\text{smooth conics residual to } \ell \text{ in } X\} \subset \mathbb{P}^2.$ \rightsquigarrow flop along the locus of conics.

3

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. Bl_{-F}(J) $\xrightarrow{b} J \to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines.

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. Bl_{-F}(J) \xrightarrow{b} J $\to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines.

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

16 / 20

 $M_{\text{inst},\mathbb{P}_0} \to \mathbb{P}_0$: relative moduli space of instanton sheaves. Bl_{-F}(J) \xrightarrow{b} J $\to \mathbb{P}_0$: blowup of J along the involution of the relative Fano surface of lines.

We have $M_{\text{inst},\mathbb{P}_0} \cong \text{Bl}_{-F}(J)$.

16 / 20

For a very general cubic fourfold *Y*:

M and N are not isomorphic and N is isomorphic to Voisin's construction.

(The Picard rank of \widetilde{M} and N is two \Rightarrow there exists a unique HK compactification of the twisted family with a Lagrangian fibration structure.)

Question: $B \cong \mathbb{P}^5$? We only know $\mathbb{P}_0 \subset B$ and conjecturally the base of a

fibration is a projective space. True for a very general cubic fourfold.

(4月) (4日) (4日)

For a very general cubic fourfold *Y*:

M and N are not isomorphic and N is isomorphic to Voisin's construction.

(The Picard rank of \widetilde{M} and N is two \Rightarrow there exists a unique HK compactification of the twisted family with a Lagrangian fibration structure.)

Question: $B \cong \mathbb{P}^5$?

We only know $\mathbb{P}_0 \subset B$ and conjecturally the base of a Lagrangian fibration is a projective space. True for a very general cubic fourfold.

Let $\mathcal{C} \subset \text{Hilb}^{5m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)

C has maximally rationally connected (MRC) quotient birational to *J*.

Theorem (Li, P., Zhao)

The projection $pr: D^{b}(Y) \rightarrow \mathcal{K}u(Y)$ induces a rational map

$$\mathcal{C} \dashrightarrow \tilde{M}, \ \Gamma \mapsto \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$$

which is the MRC fibration of C.

Let $\mathcal{C} \subset \text{Hilb}^{5m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)

 ${\cal C}$ has maximally rationally connected (MRC) quotient birational to J.

Theorem (Li, P., Zhao)

The projection $pr: D^{b}(Y) \rightarrow \mathcal{K}u(Y)$ induces a rational map

$$\mathcal{C} \dashrightarrow \tilde{M}, \ \Gamma \mapsto \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$$

which is the MRC fibration of C.

Let $\mathcal{C} \subset \text{Hilb}^{5m}(Y)$ be the connected component of elliptic quintic curves in Y.

Conjecture (Castravet)

 ${\cal C}$ has maximally rationally connected (MRC) quotient birational to J.

Theorem (Li, P., Zhao)

The projection $pr: D^{b}(Y) \rightarrow \mathcal{K}u(Y)$ induces a rational map

$$\mathcal{C} \dashrightarrow \tilde{M}, \ \Gamma \mapsto \operatorname{pr}(\mathcal{I}_{\Gamma/Y}(1))$$

which is the MRC fibration of C.

Given a K3 surface S, take $v_0 \in \tilde{H}_{alg}(S, \mathbb{Z})$ primitive and $v = mv_0$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \ge 2$ and $\langle v_0, v_0 \rangle > 2$ or m > 2 and $\langle v_0, v_0 \rangle \ge 2$ and H is v-generic, then $M_H(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_0 -generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Given a K3 surface S, take $v_0 \in \tilde{H}_{alg}(S, \mathbb{Z})$ primitive and $v = mv_0$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \ge 2$ and $\langle v_0, v_0 \rangle > 2$ or m > 2 and $\langle v_0, v_0 \rangle \ge 2$ and H is v-generic, then $M_H(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_0 -generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Given a K3 surface S, take $v_0 \in \tilde{H}_{alg}(S, \mathbb{Z})$ primitive and $v = mv_0$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \ge 2$ and $\langle v_0, v_0 \rangle > 2$ or m > 2 and $\langle v_0, v_0 \rangle \ge 2$ and H is v-generic, then $M_H(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_0 -generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Given a K3 surface S, take $v_0 \in \tilde{H}_{alg}(S, \mathbb{Z})$ primitive and $v = mv_0$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \ge 2$ and $\langle v_0, v_0 \rangle > 2$ or m > 2 and $\langle v_0, v_0 \rangle \ge 2$ and H is v-generic, then $M_H(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_0 -generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Given a K3 surface S, take $v_0 \in \tilde{H}_{alg}(S, \mathbb{Z})$ primitive and $v = mv_0$.

Theorem (Kaledin-Lehn-Sorger)

If either $m \ge 2$ and $\langle v_0, v_0 \rangle > 2$ or m > 2 and $\langle v_0, v_0 \rangle \ge 2$ and H is v-generic, then $M_H(v)$ does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v_0 -generic, they construct a symplectic resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Thanks!

<ロ> (四) (四) (日) (日) (日)

æ