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HK manifolds

Hyperkähler manifold: compact complex simply connected Kähler
manifold X with H2,0(X ) = Cη, where η is a symplectic form.
 projective HK manifolds.

Examples
dim 2: K3 surfaces.
dim > 2: 4 deformation classes are known.

1 (Beauville) Hilbn(S) where S is a K3 surface, n ≥ 2;
2 (Beauville) Kumn(A) where A is an abelian surface, n ≥ 2;
3 (O’Grady) 10-dimensional example OG10;
4 (O’Grady) 6-dimensional example OG6.

Today: we focus on OG10.
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More on Examples (1) and (3)

Let S be a K3 surface.
1 (Mukai, Yoshioka) Moduli spaces of stable sheaves on S with

primitive Mukai vector v ∼def Hilb
n(S).

3 (O’Grady, Lehn-Sorger) Symplectic resolutions of moduli
spaces of semistable sheaves on S with Mukai vector v = 2v0,
v20 = 2 ∼def OG10.

Surprising: cubic fourfolds have many associated HK manifolds.
A cubic fourfold Y is a smooth cubic hypersurface in P5 over C.

1 (Beauville-Donagi) Fano variety FY parametrizing lines in Y
∼def Hilb

2(K3).
2 (Lehn-Lehn-Sorger-van Straten) HK eightfold MY constructed

out of twisted cubic curves, for Y not containing a plane
∼def Hilb

4(K3).
3 (Laza-Saccà-Voisin) Intermediate Jacobian of Y ∼def OG10.
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Today

Why HK manifolds from cubic fourfolds?
By the work of Kuznetsov there is a subcategory of K3 type in
Db(Y ) := Db(Coh(Y )), denoted by Ku(Y ).

Our goal
1 Construct examples of projective hyperkähler manifolds of type

OG10 as desingularizations of moduli spaces of semistable
objects in Ku(Y ).

2 Relate them to the geometry of Y :
1 Intermediate Jacobian of Y ;
2 Hilbert scheme of elliptic quintic curves on Y .
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OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



OG10

Let S be a K3 surface with polarization H.
Denote by H̃(S ,Z) = (H∗(S ,Z), 〈 , 〉) the Mukai lattice of S .
Take v0 ∈ H̃alg(S ,Z) with 〈v0, v0〉 = 2 and v = 2v0.
MH(v) = moduli space of H-Gieseker semistable sheaves on S with
Mukai vector v .
Let H be a v -generic polarization on S strictly semistable
sheaves are S-equivalent to F ⊕ F ′ with F ,F ′ stable sheaves with
Mukai vector v0  Sing(MH(v)) ∼= Sym2(MH(v0)).

Example OG10 (O’Grady)

v0 = v(IZ ), where IZ = ideal sheaf of 2 points in S ,
IZ ⊕ IZ ′ is strictly semistable in MH(2v0).

Theorem (O’Grady, Lehn-Sorger)

MH(v) has a symplectic resolution M̃, obtained by blowing up the
singular locus with the reduced scheme structure, which is a
projective HK 10-fold ∼def OG10.

Laura Pertusi Cubic fourfolds and O’Grady 10 5 / 20



K3 category of a cubic fourfold

Proposition (Kuznetsov)

Db(Y ) = 〈Ku(Y ),OY ,OY (1),OY (2)〉 where
Ku(Y ) := {E ∈ Db(Y ) : HomDb(Y )(OY (i),E ) = 0,∀ i = 0, 1, 2}.

Properties
Ku(X ) is of K3 type, e.g. the Serre functor of Ku(Y ) is [2].
(Addington-Thomas) The Mukai lattice H̃(Ku(Y ),Z) of
Ku(Y ) is the free abelian group
{κ ∈ K (Y )top : χ([OY (i)], κ) = 0, for all i = 0, 1, 2} with
intersection form −χ and induced weight-two Hodge structure
H̃2,0(Ku(Y )) := H3,1(Y ), H̃1,1(Ku(Y )) := ⊕pH

p,p(Y ).
H∗alg(Ku(Y )) := H̃1,1(Ku(Y )) ∩ H̃(Ku(Y ),Z), then

〈λ1, λ2〉 ∼= A2 :=

(
2 −1
−1 2

)
⊂ H∗alg(Ku(Y )) and there is a

Hodge isometry 〈λ1, λ2〉⊥ ∼= H4(Y ,Z)prim.
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Stability conditions on Ku(Y )

Theorem (Bayer, Lahoz, Macrì, Nuer, Perry, Stellari)
1 Stab(Ku(Y )) 6= ∅. They describe a connected component

Stab†(Ku(Y )) of Stab(Ku(Y )).
2 Given v ∈ H∗alg(Ku(Y )) primitive with v2 ≥ −2 and
σ ∈ Stab†(Ku(Y )) v -generic, then the moduli space Mσ(v) of
σ-semistable objects in Ku(Y ) with Mukai vector v is a
smooth projective HK manifold of dimension 2n := v2 + 2
∼def Hilb

n(K3).

Theorem (Li, P., Zhao)

FY ∼= Mσ(λ1 + λ2).
If Y does not contain a plane, MY

∼= Mσ(2λ1 + λ2).
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Main result on O’Grady spaces

Take v0 ∈ H∗alg(Ku(Y )) primitive with v20 = 2 and v = 2v0.
[Alper-Halpern-Leistner-Heinloth] The moduli stackMσ(v) has a
good moduli space M := Mσ(v) which is a proper algebraic space.
Let σ ∈ Stab†(Ku(Y )) be v -generic ⇒ strictly semistable locus of
M is ∼= Sym2(Mσ(v0)).

Theorem (Li, P., Zhao)

M has a symplectic resolution M̃ which is a 10-dimensional smooth
projective HK manifold ∼def OG10.

Idea of proof:
∆ ∼= Mσ(v0) ⊂ Msing ∼= Sym2(Mσ(v0)) ⊂ M

1 Symplectic resolution: describe the local structure of M at the
worst singularity [Lehn-Sorger], [Alper-Hall-Rydh].

2 Projectivity, deformation type: degeneration to the locus of
cubic fourfolds with Kuznetsov component equivalent to
Db(K3).
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Special case for applications

v0 = λ1 + λ2, v = 2λ1 + 2λ2  σ : M̃ → M := Mσ(v).
Goal: understand the objects in M.
Why? [Druel, Beauville] Let X be a smooth cubic threefold.
Minst,X = moduli space of rank 2 instanton sheaves on X ,
i.e. semistable sheaves with Chern character (2, 0,−2, 0).

Objects in Minst,X are in one of the following classes:
1 Given an elliptic quintic curve Γ ⊂ X (l.c.i. quintic curve with

trivial canonical bundle, h0(OΓ) = 1 and 〈Γ〉 ∼= P4).
 0→ OX (−1)→ FΓ → IΓ/X (1)→ 0
FΓ is a rank 2 stable vector bundle.

2 Given a smooth conic C ⊂ X , let θC be the theta
characteristic of C .
 0→ FC → OX ⊗ H0(X , θC (1))→ θC (1)→ 0
FC is a rank 2 torsion free stable sheaf.

3 I`1/X ⊕ I`2/X for two lines `1, `2 ⊂ X is a semistable sheaf.
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Moduli space of instanton sheaves

J2(X ) = 1-cycles of degree 2 on X .
Minst,X

c2−→ J2(X ), F 7→ c2(F ).

Theorem (Druel, Markushevich-Tikhomirov, Beauville)

The moduli space Minst,X is smooth and connected.
The morphism c2 contracts the locus {FC ,C smooth conic} to
F 2 ∼= FX , where FX is the Fano surface of lines in X .
The morphism c2 is isomorphic to the blow up BlF 2(J2(X )) of
J2(X ) along F 2.

Back to the cubic fourfold Y :

Remark
For a smooth hyperplane section i : X ↪→ Y and F ∈ Minst,X we
have

ch(i∗F ) = 2λ1 + 2λ2.
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Associated objects in Ku(Y )

Db(Y ) = 〈OY (−2),

ROY (−2)

33
OY (−1),

ROY (−1)

55
Ku(Y ), OY 〉

LOY

hh

Definition (Projection functor)

pr : Db(Y )→ Ku(Y ), pr = ROY (−1)ROY (−2)LOY
.

Definition
Given an elliptic quintic curve Γ ⊂ Y , we define

EΓ := pr(IΓ/Y (1))

where IΓ/Y is the ideal sheaf of Γ in Y .
Given a smooth conic C ⊂ Y , we define

EC := pr(FC ).
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Moduli space M := Mσ(2λ1 + 2λ2)

Theorem (Li, P., Zhao)
1 We have EΓ

∼= i∗FΓ, where i : X ↪→ Y is a smooth hyperplane
section.

2 For σ ∈ Stab†(Ku(Y )), the objects EΓ, EC are σ-stable.

Consequence: description of an open subvariety in the stable locus
of the moduli space M.
Strictly semistable locus: Take σ ∈ Stab†(Ku(Y )) v -generic.
[Li,P.,Zhao] P` := pr(I`/X ) is σ-stable, v(P`) = λ1 + λ2. So

Msing ∼= Sym2(FY ).

We apply this result to study the relation of M with the (twisted)
Intermediate Jacobian of Y .
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Idea of proof

[Bayer-Lahoz-Macrì-Stellari]

Bl`(Y )

zz

conic fibration

""

` ⊂ Y P3

B0 = even part of the sheaf of Clifford algebras associated to the
conic fibration.
Db(Coh(P3,B0)) =: Db(P3,B0) = 〈Ψ(Ku(Y )),B1,B2,B3〉.
σα,−1 tilt-stability condition on Db(P3,B0)  σ := σ0α,−1|Ku(Y ) for
α < 1

4 .

β

α
− Ψ(E ) is stable for α� 0

↓
no walls

−14
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Intermediate Jacobian of Y

Consider the family of smooth hyperplane sections of Y
X → P0 ⊂ (P5)∨, Xt 7→ t ∈ P0

 family of twisted intermediate Jacobians
p : J → P0, J

1(Xt) 7→ t.

[Donagi-Markman] J has a symplectic form.

A long standing question was the existence of a
HK compactification of J, i.e. of a HK J̄ and a Lagrangian fibration

π : J̄ → (P5)∨ making the diagram J̄

π
��

Joo

p

��

(P5)∨ P0oo

to commute.

Proved for very general Y by Laza-Saccà-Voisin for the untwisted
family and by Voisin for the twisted family.
Recently, extended by Saccà to every cubic fourfold.
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Application 1

Recall σ : M̃ → M. Set
M0 := {[EΓ] ∈ M, Γ ⊂ X ⊂ Y elliptic quintic in smooth X} ⊂ M̃.
We have the rational map defined by the support:
M̃ 99K (P5)∨ defined on M0 → P0 by EΓ 7→ suppEΓ.

Theorem (Li, P., Zhao)

There exists a projective HK manifold N birational to M̃ with a
Lagrangian fibration compactifying p : J → P0, i.e.

M̃ // Noo

π

��

Joo

p

��

B P0oo

Idea of proof: Combination of results in birational geometry of HK
manifolds [Matsushita].
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Flop between M̃ and N

Minst,P0 → P0 : relative moduli space of instanton sheaves.

Bl−F (J)
b−→ J → P0 : blowup of J along the involution of the

relative Fano surface of lines.
We have Minst,P0

∼= Bl−F (J).

Bl−F (J) ∼= Minst,P0

ϕ
//

pr
''

b
��

M̃

σ

��

N

π
��

J? _oo

p

��

M

B P0?
_oo

[EC ] ∈ M ←→ [EC ] ∈ M̃ by stability, then
ϕ−1([EC ]) = {smooth cubic threefolds X ⊃ C} ⊂ P2.
For (`,X ) ∈ −F ⊂ J, we have
b−1((`,X )) = {smooth conics residual to ` in X} ⊂ P2.
 flop along the locus of conics.
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Some remarks

For a very general cubic fourfold Y :
M̃ and N are not isomorphic and N is isomorphic to Voisin’s
construction.
(The Picard rank of M̃ and N is two ⇒ there exists a unique HK
compactification of the twisted family with a Lagrangian fibration
structure.)

Question: B ∼= P5?
We only know P0 ⊂ B and conjecturally the base of a Lagrangian
fibration is a projective space. True for a very general cubic fourfold.
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Application 2

Let C ⊂ Hilb5m(Y ) be the connected component of elliptic quintic
curves in Y .

Conjecture (Castravet)

C has maximally rationally connected (MRC) quotient birational to
J.

Theorem (Li, P., Zhao)

The projection pr : Db(Y )→ Ku(Y ) induces a rational map

C 99K M̃, Γ 7→ pr(IΓ/Y (1))

which is the MRC fibration of C.
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Next

Given a K3 surface S , take v0 ∈ H̃alg(S ,Z) primitive and v = mv0.

Theorem (Kaledin-Lehn-Sorger)

If either m ≥ 2 and 〈v0, v0〉 > 2 or m > 2 and 〈v0, v0〉 ≥ 2 and H is
v -generic, then MH(v) does not admit a symplectic resolution.

Theorem (Arbarello-Saccà)

Case when H is not v0-generic, they construct a symplectic
resolution using quiver varieties.

Question: Do analogous statements hold for moduli spaces of
semistable objects in Kuznetsov components?

Theorem (Chen, P., Zhao, in progress)

Let Y be a cubic fourfold and X a Gushel–Mukai fourfold. Then
the Formality Conjecture holds for semistable objects in Ku(Y ) and
Ku(X ).
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Theorem (Chen, P., Zhao, in progress)

Let Y be a cubic fourfold and X a Gushel–Mukai fourfold. Then
the Formality Conjecture holds for semistable objects in Ku(Y ) and
Ku(X ).
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Next
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Thanks!
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